1. | Alfaro, A., Bernabeu, Á., Agulló, C., Parra, J., Fernández, E. (2015). Hearing Colors: an Example of Brain Plasticity. Frontiers in Systems Neuroscience, 9 (56). DOI: 10.3389/fnsys.2015.00056. |
2. | Baber, C. (2003). Cognition and Tool Use: Forms of Engagement in Human and Animal Use of Tools. London: Taylor and Francis. |
3. | Bach-y-Rita, P. (2002). Sensory Substitution and Qualia. W: A. Noë, E. Thompson (red.). Vision and Mind: Selected Readings in the Philosophy of Perception (s. 497–514). Cambridge–London: MIT Press. |
4. | Bach-y-Rita, P., Kercel, S.W. (2003). Sensory Substitution and the Human–Machine Interface. Trends in Cognitive Sciences, 7 (12), 541–546. DOI: 10.1016/j.tics.2003.10.013. |
5. | Bach-y-Rita, P., Danilov, Y., Tyler, M., Grimm, R. (2005). Late Human Brain Plasticity: Vestibular Substitution with a Tongue BrainPort Human-Machine Interface. Intellectica, 40 (1), 115–122. DOI: 10.3406/intel.2005.1362. |
6. | Basumatary, H., Hazarika, S.M. (2020). State of the Art in Bionic Hands. IEEE Transactions on Human-Machine Systems, 50 (2), 116–130. DOI: 10.1109/THMS.2020.2970740. |
7. | Beauchamp, M.S., Oswalt, D., Sun, P., Foster, B.L., Magnotti, J.F., Niketeghad, S., Yoshor, D. (2020). Dynamic Stimulation of Visual Cortex Produces form Vision in Sighted and Blind Humans. Cell, 181 (4), 774–783. DOI: 10.1016/j.cell.2020.04.033. |
8. | Cancar, L., Díaz, A., Barrientos, A., Travieso, D., Jacobs, D.M. (2013). Tactile-Sight: A Sensory Substitution Device Based on Distance-Related Vibrotactile Flow. International Journal of Advanced Robotic Systems, 10 (6). DOI: 10.5772/56235. |
9. | Chorost, M. (2005). Rebuilt: How Becoming Part Computer Made Me More Human. Boston: Houghton Mifflin Harcourt. |
10. | Clark, A. (2003). Natural-Born Cyborgs. Oxford: Oxford University Press. |
11. | Clark, A. (2005). Urodzone cyborgi. W: J. Brockman (red.). Nowy renesans. Tłum. P.J. Szwajcer, A. Eichler (s. 71–80), Warszawa: Wydawnictwo CiS. |
12. | Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. New York: Oxford University Press. |
13. | Clark, A., Chalmers, D.J. (1998). The Extended Mind. Analysis, 58 (1), 7–19. DOI:10.1093/analys/58.1.7. |
14. | Clowes, R., Gärtner, K., Hipólito, I. (red.) (2021). The Mind Technology Problem-Investigating Minds, Selves and 21st Century Artifacts. Berlin: Springer. |
15. | da Cruz, L., Dorn J.D., Humayun M.S., Dagnelie G., Handa J., Barale P.-O., Sahel J.-A., Stanga P.E., Hafezi F., Safran A.B., Salzmann J., Santos A., Birch D., Spencer R., Cideciyan A.V., de Juan E., Duncun J.L., Eliott D., Fawzi A., Olmos de Koo L.C., Ho A.C., Brown G., Haller J., Regillo C., Del Priore L.V., Arditi A., Greenberg R.J. (2016). Five-Year Safety and Performance Results from the Argus II Retinal Prosthesis System Clinical Trial. Ophthalmology, 10 (123), 2248–2254. DOI: 10.1016/j.ophtha.2016.06.049. |
16. | Donoghue, J. (2005). Connecting Cortex to Machines: Recent Advances in Brain Interfaces. Nature Neuroscience, 5 (sup.), 1085–1088. DOI: 10.1038/nn947. |
17. | Eagleman, D. (2023). Dynamiczny mózg. Historia nieustannych przeobrażeń. Tłum. A. Wojciechowski. Poznań: Zysk I S-ka. |
18. | Edwards, T.L., Cottriall, C.L., Xue, K., Simunovic, M.P., Ramsden, J.D., Zrenner, E., MacLaren, R.E. (2018). Assessment of the Electronic Retinal Implant Alpha AMS in Restoring Vision to Blind Patients with End-Stage Retinitis Pigmentosa. Ophthalmology, 125 (3), 432–443. DOI: 10.1016/j.ophtha.2017.09.019. |
19. | Erickson-Davis, C., Korzybska, H. (2021). What Do Blind People “See” with Retinal Prostheses? Observations and Qualitative Reports of Epiretinal Implant Users. PloS one, 16 (2). DOI: 10.1371/journal.pone.0229189. |
20. | Fasoli, M. (2018). Substitutive, Complementary, and Constitutive Cognitive Artifacts: Developing an Interaction-Centered Approach. Review of Philosophy and Psychology, 9 (3), 671–687. DOI: 10.1007/s13164-017-0363-2. |
21. | Fernandez, E. (2018). Development of Visual Neuroprostheses: Trends and Challenges. Bioelectronic Medicine, 4(12), 1–8. https://doi.org/10.1186/s42234-018-0013-8 |
22. | Haikonen, P.O. (2009). Qualia and Conscious Machines. International Journal of Machine Consciousness, 1 (2), 225–234. DOI: 10.1142/S1793843009000207. |
23. | Haikonen, P.O. (2022). Qualia, Consciousness and Artificial Intelligence. Journal of Artificial Intelligence and Consciousness, 9 (3), 409–418. DOI: 10.1142/S2705078522500126. |
24. | Heersmink, R. (2013a). A Taxonomy of Cognitive Artifacts: Function, Information, and Categories. Review of Philosophy and Psychology, 4 (3), 465–481.DOI: 10.1007/s13164-013-0148-1. |
25. | Heersmink, R. (2013b). Embodied Tools, Cognitive Tools and Brain-Computer Interfaces. Neuroethics, 6 (1), 207–219. DOI: 10.1007/s12152-011-9136-2 |
26. | Heersmink, R. (2016). The Metaphysics of Cognitive Artefacts. Philosophical Explorations, 19 (1), 78–93. DOI: 10.1080/13869795.2014.910310. |
27. | Heersmink, R. (2021). Varieties of Artifacts: Embodied, Perceptual, Cognitive, and Affective. Topics in Cognitive Science, 1 3(4), 573–596. DOI: 10.1111/tops.12549. |
28. | Hilpinen, R. (2011). Artifact. W: E.N. Zalta, U. Nodelman (red.), Stanford Encyclopedia of Philosophy. Pobrano z: https://plato.stanford.edu/archives/spr1999/entries/artifact/. |
29. | Holden, L.K., Firszt, J.B., Reeder, R.M., Dwyer, N.Y., Stein, A.L., Litvak, L.M., (2019). Evaluation of a New Algorithm to Optimize Audibility in Cochlear |
30. | Implant Recipients. Ear and Hearing, 40 (4), 990–1000. DOI: 10.1097/AUD.0000000000000680. |
31. | Hutchins, E. (1999). Cognitive Artifacts. W: R.A. Wilson, F.C. Keil (red.), The MIT Encyclopedia of the Cognitive Sciences (s. 126–128). Cambridge: MIT Press. |
32. | Kaspar, K., König, S., Schwandt, J., König, P. (2014). The Experience of New Sensorimotor Contingencies by Sensory Augmentation. Consciousness and Cognition, 28, 47–63. DOI: 10.1016/j.concog.2014.06.006. |
33. | Kaswan, K.S., Dhatterwal, J.S., Baliyan, A., Rani, S. (2023). Cyborg: Human and Machine Communication Paradigm. Boca Raton: CRC Press. |
34. | Lamża, Ł. (2021). Połącz kropki. Nanoboty medyczne, drony zabójcy, odczytywanie myśli i inne technologie przyszłości. Kraków: Copernicus Center Press. |
35. | Miłkowski, M. (2022). Cognitive Artifacts and Their Virtues in Scientific Practice. Studies in Logic, Grammar and Rhetoric, 67 (1), 219–246. DOI: 10.2478/slgr-2022-0012. |
36. | Møller, A.R. (2012). Hearing: Anatomy, Physiology, and Disorders of the Auditory System. San Diego: Plural Publishing. |
37. | Nardini, M. (2021). Merging Familiar and New Senses to Perceive and Act in Space. Cognitive Processing, 22 (1), 69–75. DOI: 10.1007/s10339-021-01052-3. |
38. | Nickerson, R. (2005). Technology and Cognition Amplification. W: R. Steinberg, D. Preiss (red.), Intelligence and Technology: The Impact of Tools on the Nature and Development of Human Abilities (s. 3–27). London: Lawrence Erlbaum Associates. |
39. | Niketeghad, S., Pouratian, N. (2019). Brain Machine Interfaces for Vision Restoration: the Current State of Cortical Visual Prosthetics. Neurotherapeutics, 16 (1), 134–143. DOI: 10.1007/s13311-018-0660-1. |
40. | Niparko, J.K. (red.). (2009). Cochlear Implants: Principles & Practices. Philadelphia: Lippincott Williams & Wilkins. |
41. | Ortiz-Catalan, M., Zbinden, J., Millenaar, J., D’Accolti, D., Controzzi, M., Clemente, F., Brånemark, R. (2023). A Highly Integrated Bionic Hand with Neural Control and Feedback for Use in Daily Life. Science Robotics, 8 (83). DOI: 10.1126/scirobotics.adf7360. |
42. | Petitmengin, C., Remillieux, A., Valenzuela-Moguillansky, C. (2019). Discovering the Structures of Lived Experience: Towards a Micro-Phenomenological Analysis Method. Phenomenology and the Cognitive Sciences, 18 (4), 691–730. DOI: 10.1007/s11097-018-9597-4. |
43. | Poczobut, R. (2020). Auditory Perception – Its Functions and Disorders. Towards a Mechanistic Analyses of Auditory Hybrid Systems. Studies in Logic, Grammar and Rhetoric, 62 (1), 207–227. DOI: 10.2478/slgr-2020-0020. |
44. | Poczobut, R. (2024). Czy świadomość jest niezależna od substratu? Roczniki Filozoficzne, 72 (2), 329–348. DOI: 10.18290/rf24722.16. |
45. | Preston, B. (2018). Artifact. W: E.N. Zalta, U. Nodelman (red.), Stanford Encyclopedia of Philosophy. Pobrano z: https://plato.stanford.edu/entries/artifact/. |
46. | Ramachandran, V.S., Hirstein, W. (2008). Trzy prawa qualiów. Co mówi nam neurologia o biologicznej funkcji świadomości, qualiów i własnego Ja. W: A. Klawiter (red.). Formy aktywności umysłu. Ujęcia kogntiywistyczne: T. 1. Emocje, percepcja, świadomość (s. 324–363). Warszawa: PWN. |
47. | Ramoğlu, M. (2019). Cyborg-Computer Interaction: Designing New Senses. The Design Journal, 22, 1215–1225. DOI: 0.1080/14606925.2019.1594986. |
48. | Schmicking, D. (2010). A Toolbox of Phenomenological Methods. W: D. Schmicking, S. Gallagher (red.). Handbook of Phenomenology and Cognitive Science (s. 35–55). Dordrecht: Springer. DOI: 10.1007/978-90-481-2646-0_3. |
49. | Simon, H. (1969). The Science of the Artificial, Cambridge: MIT Press. |
50. | Spence, C. (2014). The Skin as a Medium for Sensory Substitution. Multisensory Research, 27 (5–6), 293–312. DOI: 10.1163/22134808-00002452. |
51. | Sternberg, R., Preiss, D. (red.) (2005). Intelligence and Technology: The Impact of Tools on the Nature and Development of Human Abilities. London: Lawrence Erlbaum Associates. |
52. | Teunisse, W., Youssef, S., Schmidt, M. (2019). Human Enhancement through the Lens of Experimental and Speculative Neurotechnologies. Human Behavior and Emerging Technologies, 1 (4), 361–372. DOI: 10.1002/hbe2.179. |
53. | Thagard, P. (2022). Energy Requirements Undermine Substrate Independence and Mind-Body Functionalism. Philosophy of Science, 89 (1), 70–88. DOI: 10.1017/psa.2021.15. |
54. | Wang, C., Liu, C., Shang, F., Niu, S., Ke, L., Zhang, N., Zhang, S. (2023). Tactile Sensing Technology in Bionic Skin: A Review. Biosensors and Bioelectronics, 220, 114882. DOI: 10.1016/j.bios.2022.114882. |
55. | Warwick, K. (2014). The Cyborg Revolution. NanoEthics, 8 (3), 263–273. DOI:10.1007/s11569-014-0212-z. |
56. | Wouters, J., McDermott, H.J., Francart, T. (2015). Sound Coding in Cochlear Implants: From Electric Pulses to Hearing. IEEE Signal Processing Magazine, 32 (2), 67–80. DOI: 10.1109/MSP.2014.2371671. |
57. | Yue, L., Wuyyuru, V., Gonzalez-Calle, A., Dorn, J.D., Humayun, M.S. (2020). Retina-Electrode Interface Properties and Vision Restoration by Two Generations of Retinal Prostheses in One Patient – One in Each Eye. Journal of Neural Engineering, 17 (2). DOI: 10.1088/1741-2552/ab7c8f. |
58. | Zeng, F.G., Popper, A.N., Fay, R.R. (red.) (2004). Cochlear Implants: Auditory Prostheses and Electric Hearing, New York: Springer–Verlag. |
59. | Zhi, X., Ma, S., Xia, Y., Yang, B., Zhang, S., Liu, K., Wang, X. (2024). Hybrid Tactile Sensor Array for Pressure Sensing and Tactile Pattern Recognition. NanoEnergy, 125, 109532. DOI: 10.1016/j.nanoen.2024.109532. |
60. | Zielińska, E., Kobosko J., Pankowska, A., Skarżyński, H. (2022). Implant ślimakowy z perspektywy osób dorosłych z głuchotą postlingwalną – badanie jakościowe. Nowa Audiofonologia, 11 (1), 31–42. DOI: 10.17431/11.1.3. |