Autorzy: |
Surojit
Sarkar
![]() Human performance laboratory, Dept. of Physiology, Sports Authority of India, Netaji Subhas Regional Center, Sarojini Nagar, Lucknow-226008, Uttar Pradesh, India Sreejita Dutta Human performance laboratory, Dept. of Physiology, Sports Authority of India, Netaji Subhas Regional Center, Sarojini Nagar, Lucknow-226008, Uttar Pradesh, India Subhra Chatterjee ![]() Human performance laboratory, Dept. of Physiology, Sports Authority of India, National Centre of Sports Science and Research, Indira Gandhi Stadium Complex, New Delhi-110001, India Kamlesh Tiwana Sports Authority of India, Netaji Subhas Regional Center, Sarojini Nagar, Lucknow-226008, Uttar Pradesh, India Sanjay Saraswat Sports Authority of India, Netaji Subhas Regional Center, Sarojini Nagar, Lucknow-226008, Uttar Pradesh, India |
Słowa kluczowe: | Live high-train high erythropoiesis endurance performance running performance iron metabolism lung functioning |
Data publikacji całości: | 2024 |
Liczba stron: | 13 (103-115) |
1. | Bhattari, P., Paudel, B. H., Thakur, D., Bhattari, B., Subedi, B., & Khadka, R. (2018). Effect of long-term high-altitude exposure on cardiovascular autonomic adjustment during rest and post-exercise recovery. Annals of Occupational and Environmental Medicine, 30, 34. DOI: 10.1186/s40557-018-0240-1 |
2. | Bonetti, D. L., & Hopkins, W. G. (2009). Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Medicine, 39, 107–127. https://doi.org/10.2165/00007256-200939020-00002 |
3. | Chen, C. Y., Hou, C. W., Bernard, J. R., Chen, C. C., Hung, T. C., Cheng, L. L., Liao, Y. H., & Kuo, C. H. (2014). Rhodiolacrenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high-altitude training. High Altitude Medicine & Biology, 15, 371–379. https://doi.org/10.1089/ham.2013.1114 |
4. | Debray, P., & Dey, S. K. (2007). A companion of the point of deflection from linearity of heart rate and the ventilatory threshold in the determination of the anaerobic threshold in Indian boys. Journal of Physiological Anthropology, 26(1), 31–37 https://doi.org/10.2114/jpa2.26.31 |
5. | Dhawan, M., Shenoy, S., & Sandhu, J. S. (2014). Physiological, Biochemical and Strength Profile of Indian Cyclists and Boxers –A Comparative Study. International Journal of Scientific Research, 3(12), 98–101. |
6. | Durmic, T., Lazovic Popovic, B., Zlatkovic Svenda, M., Djelic, M., Zugic, V., Gavrilovic, T., Mihailovic, Z., Zdravkovic, M., & Leischik, R. (2017). The training type influence on male elite athletes’ ventilatory function. BMJ Open Sport & Exercise Medicine, 3, e000240.https://doi.org/ 10.1136/bmjsem-2017-000240 |
7. | Faramoushi, M., Bolboli, L., & Valizadeh, A. (2012). The effect of altitude on lung function of male athletes. Annals of Biological Research, 3(1), 313–321. |
8. | Ge, R. L., Witkowski, S., Zhang, Y., Alfrey, C., Sivieri, M., Karlsen, T., Resaland, G. K., Harber, M., Stray-Gundersen, J., & Levine, B. D. (2002). Determinants of erythropoietin release in response to short-term hypobaric hypoxia. Journal of Applied Physiology, 92, 2361–2367. https://doi.org/10.1152/japplphysiol.00684.2001 |
9. | Heinicke, K., Heinicke, I., Schmidt, W., & Wolfarth, B. (2005). A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. International Journal of Sports Medicine, 26(5), 350–355. https://doi.org/10.1055/s-2004-821052 |
10. | Man, M. C., Ganera, C., Barbulet, G. D., Krzysztofik, M., Panaet, A. E., Cucui, A. I., Tohanean, D. I., & Alexe, D. I. (2021). The Modifications of Haemoglobin, Erythropoietin Values and Running Performance While Training at Mountain vs. Hilltop vs. Seaside. International Journal of Environmental Research and Public Health, 18, 9486. https://doi.org/10.3390/ijerph18189486 |
11. | Marini, F. C., Federici, A., Skinner, J. S., Piccoli, G., Stocchi, V., Zoffoli, L., Correale, L., Dell’Anna, S., Naldini, C. A., Vandoni, M., & Lucertini, F. (2022). Effect of steady-state aerobic exercise intensity and duration on the relationship between reserves of heart rate and oxygen uptake. Peer J, 10, e13190. https://doi.org/10.7717/peerj.13190 |
12. | Mason, N. P., Barry, P. W., Pollard, A. J., Collier, D. J., Taub, N. A., Miller, M. R., & Milledge, J. S. (2000). Serial changes in spirometry during an ascent to 5300 m in the Nepalese Himalayas. High Altitude Medicine & Biology, 1(3), 185–195. https://doi.org/10.1089/15270290050144181 |
13. | Mazzeo, R. S. (2008). Physiological responses to exercise at altitude: an update. Sports Medicine, 38(1), 1–8. https://doi.org/10.2165/00007256-200838010-00001 |
14. | Muraoka, I., & Gando, Y. (2012). Effects of the “live high-train high” and “live high-train low” protocols on physiological adaptations and athletic performance. Journal of Physical Fitness and Sports Medicine, 1(3), 447–455. |
15. | Nogueira, F. S., & Pompeu, F. A. M. S. (2010). Measurement Precision of the Anaerobic Threshold by means of a Portable Calorimeter. Arquivos Brasileiros de Cardiologia, 95(3), 354–363. https://doi.org/10.1590/s0066-782x2010005000090 |
16. | Płoszczyca, K., Langfort, J., & Czuba, M. (2018). The Effects of Altitude Training on Erythropoietic Response and Hematological Variables in Adult Athletes: A Narrative Review. Frontiers in Physiology, 9, 375. https://doi.org/10.3389/fphys.2018.00375 |
17. | Pugliese, L., Serpiello, F. R., Millet, G. P., & La Torre, A. (2014). Training diaries during altitude training camp in two Olympic champions: an observational case study. Journal of Sports Science and Medicine, 13, 666–672. |
18. | Saltin, B., Kim, C. K., Terrados, N., Larsen, H., Svedenhag, J., & Rolf, C. J. (1995). Morphology, enzyme activities and buffer capacity in leg muscles of Kenyan and Scandinavian runners. Scandenavian Journal of Medicine & Science in Sports, 5, 222–230. |
19. | Sarkar, S., Chatterjee, S., & Dey, S. K. (2019). Effect of 8 weeks high intensity interval training on maximum oxygen uptake capacity and related cardio-respiratory parameters at anaerobic threshold level of Indian male field hockey players. European Journal of Physical Education and Sport Science, 5(5), 106–116. |
20. | Sarkar, S., Dasgupta, S., Meitei, K. K., Adhikari, S., Bandyopadhyay, A., & Dey, S. K. (2020). Effect of eccentric cycling and plyometric training on physiological and performance related parameters of trained junior track cyclists. Polish Journal of Sport and Tourism, 27(1), 14–20. https://doi.org/10.2478/pjst-2020-0003 |
21. | Saunders, P. U., Pyne, D. B., & Gore, C. J. (2009). Endurance training at altitude. High Altitude Medicine & Biology, 10, 135–148. |
22. | Semenza, G.L. (2004). 02-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. Journal of Applied Physiology, 96(3), 1173–1177. https://doi.org/10.1152/japplphysiol.00770.2003 |
23. | Sharma, A. P., Saunders, P. U., Garvican-Lewis, L. A., Périard, J. D., Clark, B., Gore, C. J., Raysmith, B. P., Stanley, J., Robertson, E. Y., & Thompson, K. G. (2018). Training quantification and periodization during live high train high at 210 m elite runners: anobservational cohort case study. Journal of Sports Science and Medicine, 17(4), 607–616. PMID: 30479529 |
24. | Sinex, J. A., & Chapman, R. F. (2015). Hypoxic training methods for improving endurance exercise performance. Journal of Sport and Health Science, 4, 325–332. https://doi.org/10.1016/j.jshs.2015.07.005 |
25. | Srividhya, S. M., Subramanian, A., & Majumdar, P. (2017). Reference interval for Irion profile in male and female athletes. Biology of Exercise, 13(2), https://doi.org/10.4127/jbe.2017.0119 |
26. | Stray-Gundersen, J., Chapman, R. F., & Levine, B. D. (2001). ‘Living high training low’ altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 91, 1113–1120. https://doi.org/10.1152/jappl.2001.91.3.1113 |
27. | Valizadeh, A., Faramoushi, M., & Rezaei, M. (2012). Comparison of pulmonary function parameters changes at different altitudes in female athletes. Annals of Biological Research, 3(3), 1600–1606. |
28. | Vargas-Pinilla, O. C. (2014). Exercise and Training at Altitudes: Physiological Effects and Protocols. Revista Ciencias de la Salud, 12(1), 111–126. https://doi.org/10.12804/revsalud12.1.2014.07 |
29. | Vissers, H. (2014). Altitude training and its effects on the human body. Master’s thesis paper. Master of Science in Clinical Exercise Physiology. University of Wisconsin River Falls. |
30. | Vogt, M., Puntschart, A., Geiser, J., Zuleger, C., Billeter, R., & Hoppeler, H. (2001). Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. Journal of Applied Physiology, 91(1), 173–82. https://doi.org/10.1152/jappl.2001.91.1.173 |
31. | Wilber, R. L., Stray-Gunderson, J., & Levine, B. D. (2007). Effect of hypoxic “dose” on physiological responses and sea-level performance. Medicine & Science in Sports & Exercise, 39, 1590–1599. https://doi.org/10.1249/mss.0b013e3180de49bd |
32. | Wyatt, F. B. (2014). Physiological Responses to Altitude: A Brief Review. Journal of Exercise Physiology Online, 17(1), 90–96. |