Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2020.1-01
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 29, No. 1/2020
Viscoelastic properties of lower extremity muscles after elite track cycling sprint events: a case report

Autorzy: Sebastian Klich
Department of Paralympic Sport, University School of Physical Education in Wroclaw, Wroclaw, Poland

Igor Krymski
Department of Paralympic Sport, University School of Physical Education in Wroclaw, Wroclaw, Poland; National Team Coach, Polish Cycling Federation, 1 Andrzeja Street, 05-800 Pruszków, Poland

Adam Kawczyński
Department of Paralympic Sport, University School of Physical Education in Wroclaw, Wroclaw, Poland
Słowa kluczowe: viscoelastic properties muscle stiffness creep 200m flying case report
Data publikacji całości:2020
Liczba stron:6 (5-10)
Cited-by (Crossref) ?:

Abstrakt

Sprint cycling events require a high level of anaerobic capacity and therefore may affect peripheral fatigue throughout exercise-induced muscle damage. In fact, those alterations might decrease power generation. This study was performed on a 23 years old elite track cyclist started in men’s sprint. The measurements included power output (W) and cadence (rpm), lactate concentration (La-), heart rate (bpm), Rated Perceived Exertion scale and viscoelastic properties analysis. The present study have shown a new approach to monitor the muscle properties of the lower extremity after 200m flying start and repeated sprint races. Therefore, we hypothesized that repeated sprint races might lead to alterations in viscoelastic properties of lower extremity muscles. In track cycling, especially sprint events these variations may lead to increasing muscle fatigue. Furthermore, training control and monitoring related to assessment of muscles properties can be a source of counteracting injuries and relieving fatigue.
Pobierz plik

Plik artykułu

Bibliografia

1.Abbiss, C. R., Peiffer, J. J., & Laursen, P. B. (2009). Optimal cadence selection during cycling. International SportMed Journal, 10(1), 1-15.
2.da Silva, J. C., Tarassova, O., Ekblom, M. M., Andersson, E., Ronquist, G., & Arndt, A. (2016). Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography. Eur J Appl Physiol, 116(9), 1807-1817. doi:10.1007/s00421-016-3428-5
3.Davidson, M. J., Bryant, A. L., Bower, W. F., & Frawley, H. C. (2017). Myotonometry Reliably Measures Muscle Stiffness in the Thenar and Perineal Muscles. Physiother Can, 69(2), 104-112. doi:10.3138/ptc.2015-85
4.9
5.Dorel, S., Hautier, C. A., Rambaud, O., Rouffet, D., Van Praagh, E., Lacour, J. R., & Bourdin, M. (2005). Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med, 26(9), 739-746. doi:10.1055/s-2004-830493
6.Kawczynski, A., Mroczek, D., Andersen, R. E., Stefaniak, T., Arendt-Nielsen, L., & Madeleine, P. (2018). Trapezius viscoelastic properties are heterogeneously affected by eccentric exercise. J Sci Med Sport, 21(8), 864-869. doi:10.1016/j.jsams.2018.01.005
7.Kawczynski, A., Samani, A., Mroczek, D., Chmura, P., Blach, W., Migasiewicz, J., . . . Madeleine, P. (2015). Functional connectivity between core and shoulder muscles increases during isometric endurance contractions in judo competitors. Eur J Appl Physiol, 115(6), 1351-1358. doi:10.1007/s00421-015-3114-z
8.Klich, S., Krymski, I., Michalik, K., & Kawczynski, A. (2018). Effect of short-term cold-water immersion on muscle pain sensitivity in elite track cyclists. Phys Ther Sport, 32, 42-47. doi:10.1016/j.ptsp.2018.04.022
9.Martin, J. C., Davidson, C. J., & Pardyjak, E. R. (2007). Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Perform, 2(1), 5-21.
10.McDaniel, J., Behjani, N. S., Elmer, S. J., Brown, N. A., & Martin, J. C. (2014). Joint-specific power-pedaling rate relationships during maximal cycling. J Appl Biomech, 30(3), 423-430. doi:10.1123/jab.2013-0246
11.Ryan, M. M., & Gregor, R. J. (1992). EMG profiles of lower extremity muscles during cycling at constant workload and cadence. J Electromyogr Kinesiol, 2(2), 69-80. doi:10.1016/1050-6411(92)90018-e
12.Stafilidis, S., & Arampatzis, A. (2007). Muscle - tendon unit mechanical and morphological properties and sprint performance. J Sports Sci, 25(9), 1035-1046. doi:10.1080/02640410600951589
13.Takaishi, T., Yasuda, Y., Ono, T., & Moritani, T. (1996). Optimal pedaling rate estimated from neuromuscular fatigue for cyclists. Med Sci Sports Exerc, 28(12), 1492-1497.
14.Viir, R., Virkus, A., Laiho, K., Rajaleid, K., Selart, A., & Mikkelsson, M. (2007). Trapezius muscle tone and viscoelastic properties in sitting and supine positions. Scandinavian Journal of Work, Environment & Health, 33(3), 76.
15.10
16.White, A., Abbott, H., Masi, A. T., Henderson, J., & Nair, K. (2018). Biomechanical properties of low back myofascial tissue in younger adult ankylosing spondylitis patients and matched healthy control subjects. Clin Biomech (Bristol, Avon), 57, 67-73. doi:10.1016/j.clinbiomech.2018.06.006