Autorzy: |
Mateusz
Kowalski
![]() Department of Functional Diagnostics and Physical Medicine; Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland Anna Lubkowska ![]() Department of Functional Diagnostics and Physical Medicine; Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland |
Słowa kluczowe: | exercise recovery cold water immersion lactate concentration |
Data publikacji całości: | 2022 |
Liczba stron: | 10 (61-70) |
1. | Adamczyk, J.G., Krasowska, I., Boguszewski, D., Reaburn, P. (2016). The use of thermal imaging to assess the effectiveness of ice massage and cold-water immersion as methods for supporting post-exercise recovery. Journal of thermal biology, 60, 20–25. DOI:10.1016/j.jtherbio.2016.05.006 |
2. | Aguiar, P.F., Magalhães, S.M., Fonseca, I.A., da Costa Santos, V.B., de Matos, M.A., Peixoto, M.F., Nakamura, F.Y., Crandall, C., Araújo, H.N., Silveira, L.R., Rocha-Vieira, E., de Castro Magalhães, F., Amorim, F.T. (2016). Post-exercise cold water immersion does not alter high intensity interval training-induced exercise performance and Hsp72 responses but enhances mitochondrial markers. Cell stress & chaperones, 21 (5), 793–804.bDOI:10.1007/s12192-016-0704-6 |
3. | Algafly, A.A., George, K.P. (2007). The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance. British journal of sports medicine, 41 (6), 365–369. DOI:10.1136/bjsm.2006.031237. |
4. | Astorino, T.A., DeRevere, J.L., Anderson, T., Kellogg, E., Holstrom, P., Ring, S., Ghaseb, N. (2019). Blood Lactate Concentration Is Not Related to the Increase in Cardiorespiratory Fitness Induced by High Intensity Interval Training. International journal of environmental research and public health, 16 (16), 2845. DOI:10.3390/ijerph16162845. |
5. | Bleakley, C., McDonough, S., Gardner, E., Baxter, G.D., Hopkins, J.T., Davison, G. W. (2012). Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise. The Cochrane database of systematic reviews, 2012 (2), CD008262. DOI:10.1002/14651858.CD008262.pub2. |
6. | Cairns S.P. (2006). Lactic acid and exercise performance: culprit or friend? Sports medicine (Auckland, N.Z.), 36 (4), 279–291. DOI:10.2165/00007256-200636040-00001. |
7. | Earp, J.E., Hatfield, D.L., Sherman, A., Lee, E C., Kraemer, W.J. (2019). Cold-water immersion blunts and delays increases in circulating testosterone and cytokines post-resistance exercise. European journal of applied physiology, 119 (8), 1901–1907. DOI:10.1007/s00421-019-04178-7. |
8. | Elias, G.P., Varley, M.C., Wyckelsma, V.L., McKenna, M.J., Minahan, C.L., Aughey, R.J. (2012). Effects of water immersion on posttraining recovery in Australian footballers. International journal of sports physiology and performance, 7 (4), 357–366. DOI:10.1123/ijspp.7.4.357. |
9. | Guilherme L., Guglielmo G., Denadai B. (2000). Assessment of Anaerobic Power of Swimmers: The Correlation of Laboratory Tests on an Arm Ergometer with Field Tests in a Swimming Pool. Journal of Strength and Conditioning Research,14 (4), 395–398. DOI:10.3390/sports9050055. |
10. | Ihsan, M., Watson, G., Abbiss, C.R. (2016). What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise? Sports medicine (Auckland, N.Z.), 46 (8), 1095–1109. DOI:10.1007/s40279-016-0483-3. |
11. | Jones, A.M., Carter, H. (2000). The effect of endurance training on parameters of aerobic fitness. Sports medicine (Auckland, N.Z.), 29 (6), 373–386. DOI:10.2165/00007256-200029060-00001. |
12. | Klich, S., Krymski, I., Michalik, K., Kawczyński, A. (2018). Effect of short-term cold-water immersion on muscle pain sensitivity in elite track cyclists. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 32, 42–47. DOI: 10.1016/j.ptsp.2018.04.022. |
13. | Klusiewicz A., Zdanowicz R. (2002). Anaerobic threshold and the state of maximum lactate balance- practical considerations. Sport wyczynowy, 1-2/445–446. |
14. | Knight, K., Brucker, J.B., Stoneman, P., Rubley, M.D. (2000). Muscle Injury Management with Cryotherapy. Athletic Therapy Today, 5, 26–30. |
15. | Leeder, J., Gissane, C., van Someren, K., Gregson, W., Howatson, G. (2012). Cold water immersion and recovery from strenuous exercise: a meta-analysis. British journal of sports medicine, 46 (4), 233–240. DOI:10.1136/bjsports-2011-090061. |
16. | Maté-Muñoz, J.L., Lougedo, J.H., Barba, M., García-Fernández, P., Garnacho-Castaño, M.V., Domínguez, R. (2017). Muscular fatigue in response to different modalities of CrossFit sessions. PloS one, 12 (7), e0181855. DOI:10.1371/journal.pone.0181855. |
17. | Kevin K. Mccully, Bertrand Authier, Jennifer Olive, and Bernard J. Clark. Muscle Fatigue: The Role of Metabolism. Canadian Journal of Applied Physiology, 27 (1), 70–82. DOI:10.1139/h02-005. |
18. | Peiffer, J.J., Abbiss, C.R., Watson, G., Nosaka, K., Laursen, P.B. (2010). Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. British journal of sports medicine, 44 (6), 461–465. DOI:10.1136/bjsm.2008.048173. |
19. | Poppendieck, W., Faude, O., Wegmann, M., Meyer, T. (2013). Cooling and performance recovery of trained athletes: a meta-analytical review. International journal of sports physiology and performance, 8 (3), 227–242. DOI:10.1123/ijspp.8.3.227. |
20. | Ražanskas, P., Verikas, A., Olsson, C., Viberg, P.A. (2015). Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise. Sensors (Basel, Switzerland), 15m(8), 20480–20500. DOI:10.3390/s150820480. |
21. | Roberts, L.A., Raastad, T., Markworth, J.F., Figueiredo, V.C., Egner, I.M., Shield, A., Cameron-Smith, D., Coombes, J.S., Peake, J.M. (2015). Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. The Journal of physiology, 593 (18), 4285–4301. DOI:10.1113/JP270570. |
22. | Rodacki, A.L., Fowler, N.E., Bennett, S.J. (2002). Vertical jump coordination: fatigue effects. Medicine and science in sports and exercise, 34 (1), 105–116. DOI:10.1097/00005768-200201000-00017. |
23. | Vaile, J., O'Hagan, C., Stefanovic, B., Walker, M., Gill, N., Askew, C.D. (2011). Effect of cold water immersion on repeated cycling performance and limb blood flow. British journal of sports medicine, 45 (10), 825–829. DOI:10.1136/bjsm.2009.067272. |
24. | Von Duvillard, S.P. Exercise lactate levels: simulation and reality of aerobic and anaerobic metabolism. Eur J Appl Physiol, 86, 3–5 (2001). DOI:10.1007/s004210100515. |
25. | Vieira, A., Siqueira, A.F., Ferreira-Junior, J.B., do Carmo, J., Durigan, J.L., Blazevich, A., Bottaro, M. (2016). The Effect of Water Temperature during Cold-Water Immersion on Recovery from Exercise-Induced Muscle Damage. International journal of sports medicine, 37 (12), 937–943. DOI:10.1055/s-0042-111438. |
26. | White, G., Caterini, J. E. (2017). Cold water immersion mechanisms for recovery following exercise: cellular stress and inflammation require closer examination. The Journal of physiology, 595 (3), 631–632. DOI:10.1113/JP273659. |
27. | White, G.E., Wells, G.D. (2013). Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extreme physiology & medicine, 2 (1), 26. DOI:10.1186/2046-7648-2-26. |
28. | Yeung, S.S., Ting, K.H., Hon, M., Fung, N.Y., Choi, M.M., Cheng, J.C., Yeung, E.W. (2016). Effects of Cold Water Immersion on Muscle Oxygenation During Repeated Bouts of Fatiguing Exercise: A Randomized Controlled Study. Medicine, 95 (1), e2455. DOI:10.1097/MD.0000000000002455. |
29. | Złotkowska R., Skiba M., Mroczek A., Bilewicz- Wyrozumska T., Król K., Lar K., Zbrojkiewicz E. (2015). Negative effects of physical activity and sports training. Hygeia Public Health, 50 (1):41–46. |