Autorzy: |
Alì
Mokarrami
![]() Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy Annunziata Capacci ![]() Department of Aging, Orthopedic and Rheumatologic Sciences, A. Gemelli General Hospital Foundation - IRCCS, 00168 Rome, Italy Beatrice Trio ![]() Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy Giuseppe Merra ![]() Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy/ Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy David Della Morte Canosci ![]() Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy |
Słowa kluczowe: | endurance; exercise; immune response; microbiota; nutrition; probiotics |
Data publikacji całości: | 2024 |
Liczba stron: | 29 (25-53) |
1. | Abboud, K. Y., Reis, S. K., Martelli, M. E., Zordão, O. P., Tannihão, F., de Souza, A. Z. Z., Assalin, H. B., Guadagnini, D., Rocha, G. Z., Saad, M. J. A., & Prada, P. O. (2019). Oral Glutamine Supplementation Reduces Obesity, Pro-Inflammatory Markers, and Improves Insulin Sensitivity in DIO Wistar Rats and Reduces Waist Circumference in Overweight and Obese Humans. Nutrients, 11(3), 536. https://doi.org/10.3390/nu11030536 |
2. | Akira, S., & Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunology letters, 85(2), 85–95. https://doi.org/10.1016/s0165-2478(02)00228-6 |
3. | Allen, J. M., Mailing, L. J., Cohrs, J., Salmonson, C., Fryer, J. D., Nehra, V., Hale, V. L., Kashyap, P., White, B. A., & Woods, J. A. (2018). Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut microbes, 9(2), 115–130. https://doi.org/10.1080/19490976.2017.1372077 |
4. | Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T. V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., & Marette, A. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 64(6), 872–883. https://doi.org/10.1136/gutjnl-2014-307142 |
5. | Appukutty, M., Ramasamy, K., Rajan, S., Vellasamy, S., Ramasamy, R., & Radhakrishnan, A. K. (2015). Effect of orally administered soy milk fermented with Lactobacillus plantarum LAB12 and physical exercise on murine immune responses. Beneficial microbes, 6(4), 491–496. https://doi.org/10.3920/BM2014.0129 |
6. | Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science (New York, N.Y.), 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816 |
7. | Balducci, S., Zanuso, S., Nicolucci, A., Fernando, F., Cavallo, S., Cardelli, P., Fallucca, S., Alessi, E., Letizia, C., Jimenez, A., Fallucca, F., & Pugliese, G. (2010). Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, metabolism, and cardiovascular diseases : NMCD, 20(8), 608–617. https://doi.org/10.1016/j.numecd.2009.04.015 |
8. | Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627 |
9. | Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. European journal of clinical nutrition, 61(3), 355–361. https://doi.org/10.1038/sj.ejcn.1602546 |
10. | Brandt, N., Gunnarsson, T. P., Hostrup, M., Tybirk, J., Nybo, L., Pilegaard, H., & Bangsbo, J. (2016). Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle. Physiological reports, 4(14), e12844. https://doi.org/10.14814/phy2.12844 |
11. | Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut microbes, 7(3), 216–234. https://doi.org/10.1080/19490976.2016.1158395 |
12. | Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D., & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS one, 12(2), e0171352. https://doi.org/10.1371/journal.pone.0171352 |
13. | Brinkmann, C., Chung, N., Schmidt, U., Kreutz, T., Lenzen, E., Schiffer, T., Geisler, S., Graf, C., Montiel-Garcia, G., Renner, R., Bloch, W., & Brixius, K. (2012). Training alters the skeletal muscle antioxidative capacity in non-insulin-dependent type 2 diabetic men. Scandinavian journal of medicine & science in sports, 22(4), 462–470. https://doi.org/10.1111/j.1600-0838.2010.01273.x |
14. | Burke, L. M., Ross, M. L., Garvican-Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., Mirtschin, J. G., Cato, L. E., Strobel, N., Sharma, A. P., & Hawley, J. A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. The Journal of physiology, 595(9), 2785–2807. https://doi.org/10.1113/JP273230 |
15. | Campbell, S. C., Wisniewski, P. J., Noji, M., McGuinness, L. R., Häggblom, M. M., Lightfoot, S. A., Joseph, L. B., & Kerkhof, L. J. (2016). The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PloS one, 11(3), e0150502. https://doi.org/10.1371/journal.pone.0150502 |
16. | Cani, P. D., Lecourt, E., Dewulf, E. M., Sohet, F. M., Pachikian, B. D., Naslain, D., De Backer, F., Neyrinck, A. M., & Delzenne, N. M. (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American journal of clinical nutrition, 90(5), 1236–1243. https://doi.org/10.3945/ajcn.2009.28095 |
17. | Carbajo-Pescador, S., Porras, D., García-Mediavilla, M. V., Martínez-Flórez, S., Juarez-Fernández, M., Cuevas, M. J., Mauriz, J. L., González-Gallego, J., Nistal, E., & Sánchez-Campos, S. (2019). Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Disease models & mechanisms, 12(5), dmm039206. https://doi.org/10.1242/dmm.039206 |
18. | Castell, L. M., Poortmans, J. R., Leclercq, R., Brasseur, M., Duchateau, J., & Newsholme, E. A. (1997). Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. European journal of applied physiology and occupational physiology, 75(1), 47–53. https://doi.org/10.1007/s004210050125 |
19. | Cerdá, B., Pérez, M., Pérez-Santiago, J. D., Tornero-Aguilera, J. F., González-Soltero, R., & Larrosa, M. (2016). Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in physiology, 7, 51. https://doi.org/10.3389/fphys.2016.00051 |
20. | Chassard, C., & Lacroix, C. (2013). Carbohydrates and the human gut microbiota. Current opinion in clinical nutrition and metabolic care, 16(4), 453–460. https://doi.org/10.1097/MCO.0b013e3283619e63 |
21. | Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives, 121(6), 725–730. https://doi.org/10.1289/ehp.1306534 |
22. | Churchward-Venne, T. A., Burd, N. A., Mitchell, C. J., West, D. W., Philp, A., Marcotte, G. R., Baker, S. K., Baar, K., & Phillips, S. M. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of physiology, 590(11), 2751–2765. https://doi.org/10.1113/jphysiol.2012.228833 |
23. | Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O'Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541 |
24. | Close, G. L., Hamilton, D. L., Philp, A., Burke, L. M., & Morton, J. P. (2016). New strategies in sport nutrition to increase exercise performance. Free radical biology & medicine, 98, 144–158. https://doi.org/10.1016/j.freeradbiomed.2016.01.016 |
25. | Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract?. The Journal of physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270 |
26. | Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17–44. https://doi.org/10.3390/nu7010017 |
27. | Cook, M. D., Martin, S. A., Williams, C., Whitlock, K., Wallig, M. A., Pence, B. D., & Woods, J. A. (2013). Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain, behavior, and immunity, 33, 46–56. https://doi.org/10.1016/j.bbi.2013.05.005 |
28. | Crawford, M., Whisner, C., Al-Nakkash, L., & Sweazea, K. L. (2019). Six-Week High-Fat Diet Alters the Gut Microbiome and Promotes Cecal Inflammation, Endotoxin Production, and Simple Steatosis without Obesity in Male Rats. Lipids, 54(2-3), 119–131. https://doi.org/10.1002/lipd.12131 |
29. | Cronin, O., Barton, W., Skuse, P., Penney, N. C., Garcia-Perez, I., Murphy, E. F., Woods, T., Nugent, H., Fanning, A., Melgar, S., Falvey, E. C., Holmes, E., Cotter, P. D., O'Sullivan, O., Molloy, M. G., & Shanahan, F. (2018). A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems, 3(3), e00044-18. https://doi.org/10.1128/mSystems.00044-18 |
30. | den Hartigh L. J. (2019). Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients, 11(2), 370. https://doi.org/10.3390/nu11020370 |
31. | Derrien, M., Belzer, C., & de Vos, W. M. (2017). Akkermansia muciniphila and its role in regulating host functions. Microbial pathogenesis, 106, 171–181. https://doi.org/10.1016/j.micpath.2016.02.005 |
32. | Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of psychiatric research, 43(2), 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009 |
33. | Dhillon, J., Li, Z., & Ortiz, R. M. (2019). Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen. Current developments in nutrition, 3(8), nzz079. https://doi.org/10.1093/cdn/nzz079 |
34. | Donati Zeppa, S., Agostini, D., Gervasi, M., Annibalini, G., Amatori, S., Ferrini, F., Sisti, D., Piccoli, G., Barbieri, E., Sestili, P., & Stocchi, V. (2019). Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 12(1), 17. https://doi.org/10.3390/nu12010017 |
35. | Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., & Li, Y. P. (2011). Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25(1), 99–110. https://doi.org/10.1096/fj.10-164152 |
36. | Elliott-Sale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B., & Ackerman, K. E. (2018). Endocrine Effects of Relative Energy Deficiency in Sport. International journal of sport nutrition and exercise metabolism, 28(4), 335–349. https://doi.org/10.1123/ijsnem.2018-0127 |
37. | Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical pharmacology, 139, 82–93. https://doi.org/10.1016/j.bcp.2017.04.033 |
38. | Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K. R., & Gibson, D. L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. https://doi.org/10.1186/s40168-016-0189-7 |
39. | Etxeberria, U., Arias, N., Boqué, N., Macarulla, M. T., Portillo, M. P., Martínez, J. A., & Milagro, F. I. (2015). Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. The Journal of nutritional biochemistry, 26(6), 651–660. https://doi.org/10.1016/j.jnutbio.2015.01.002 |
40. | Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., Antonopoulos, D. A., Smith, D., Chang, E. B., & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one, 9(3), e92193. https://doi.org/10.1371/journal.pone.0092193 |
41. | Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071. https://doi.org/10.1073/pnas.1219451110 |
42. | Fakharian, F., Asgari, B., Nabavi-Rad, A., Sadeghi, A., Soleimani, N., Yadegar, A., & Zali, M. R. (2022). The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Frontiers in cellular and infection microbiology, 12, 953718. https://doi.org/10.3389/fcimb.2022.953718 |
43. | Fava, F., Lovegrove, J. A., Gitau, R., Jackson, K. G., & Tuohy, K. M. (2006). The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Current medicinal chemistry, 13(25), 3005–3021. https://doi.org/10.2174/092986706778521814 |
44. | Fielding, R., Riede, L., Lugo, J. P., & Bellamine, A. (2018). l-Carnitine Supplementation in Recovery after Exercise. Nutrients, 10(3), 349. https://doi.org/10.3390/nu10030349 |
45. | Fothergill, E., Guo, J., Howard, L., Kerns, J. C., Knuth, N. D., Brychta, R., Chen, K. Y., Skarulis, M. C., Walter, M., Walter, P. J., & Hall, K. D. (2016). Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity (Silver Spring, Md.), 24(8), 1612–1619. https://doi.org/10.1002/oby.21538 |
46. | Francaux, M. (2009). Toll-like receptor signalling induced by endurance exercise. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 34(3), 454–458. https://doi.org/10.1139/H09-036 |
47. | Frisard, M. I., McMillan, R. P., Marchand, J., Wahlberg, K. A., Wu, Y., Voelker, K. A., Heilbronn, L., Haynie, K., Muoio, B., Li, L., & Hulver, M. W. (2010). Toll-like receptor 4 modulates skeletal muscle substrate metabolism. American journal of physiology. Endocrinology and metabolism, 298(5), E988–E998. https://doi.org/10.1152/ajpendo.00307.2009 |
48. | Frosali, S., Pagliari, D., Gambassi, G., Landolfi, R., Pandolfi, F., & Cianci, R. (2015). How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. Journal of immunology research, 2015, 489821. https://doi.org/10.1155/2015/489821 |
49. | Gentile, C. L., & Weir, T. L. (2018). The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.), 362(6416), 776–780. https://doi.org/10.1126/science.aau5812 |
50. | Ghonimy, A., Zhang, D. M., Farouk, M. H., & Wang, Q. (2018). The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. International journal of molecular sciences, 19(4), 1008. https://doi.org/10.3390/ijms19041008 |
51. | Gleeson, M., Bishop, N. C., Oliveira, M., & Tauler, P. (2011). Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. International journal of sport nutrition and exercise metabolism, 21(1), 55–64. https://doi.org/10.1123/ijsnem.21.1.55 |
52. | González-Sarrías A, Espín JC, Tomás-Barberán FA. (2017). Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Technol [Internet]. 2017(69),:281 http://dx.doi.org/10.1016/j.tifs.2017.07.010 |
53. | Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., Knight, R., & Ley, R. E. (2014). Conducting a microbiome study. Cell, 158(2), 250–262. https://doi.org/10.1016/j.cell.2014.06.037 |
54. | Gruenwald, J., Graubaum, H. J., & Harde, A. (2002). Effect of a probiotic multivitamin compound on stress and exhaustion. Advances in therapy, 19(3), 141–150. https://doi.org/10.1007/BF02850270 |
55. | Grundlingh, J., Dargan, P. I., El-Zanfaly, M., & Wood, D. M. (2011). 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. Journal of medical toxicology : official journal of the American College of Medical Toxicology, 7(3), 205–212. https://doi.org/10.1007/s13181-011-0162-6 |
56. | Hagio, M., Matsumoto, M., Yajima, T., Hara, H., & Ishizuka, S. (2010). Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. Journal of applied physiology (Bethesda, Md. : 1985), 109(3), 663–668. https://doi.org/10.1152/japplphysiol.00777.2009 |
57. | Hassan, Y., Head, V., Jacob, D., Bachmann, M. O., Diu, S., & Ford, J. (2016). Lifestyle interventions for weight loss in adults with severe obesity: a systematic review. Clinical obesity, 6(6), 395–403. https://doi.org/10.1111/cob.12161 |
58. | Haywood, B. A., Black, K. E., Baker, D., McGarvey, J., Healey, P., & Brown, R. C. (2014). Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. Journal of science and medicine in sport, 17(4), 356–360. https://doi.org/10.1016/j.jsams.2013.08.004 |
59. | Heintz-Buschart, A., & Wilmes, P. (2018). Human Gut Microbiome: Function Matters. Trends in microbiology, 26(7), 563–574. https://doi.org/10.1016/j.tim.2017.11.002 |
60. | Hoffman-Goetz, L., Pervaiz, N., & Guan, J. (2009). Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain, behavior, and immunity, 23(4), 498–506. https://doi.org/10.1016/j.bbi.2009.01.015 |
61. | Hoffman-Goetz, L., Pervaiz, N., Packer, N., & Guan, J. (2010). Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain, behavior, and immunity, 24(7), 1105–1115. https://doi.org/10.1016/j.bbi.2010.05.001 |
62. | Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in't Veld, J. H. (1998). Overview of gut flora and probiotics. International journal of food microbiology, 41(2), 85–101. https://doi.org/10.1016/s0168-1605(98)00044-0 |
63. | Hsu, Y. J., Huang, W. C., Lin, J. S., Chen, Y. M., Ho, S. T., Huang, C. C., & Tung, Y. T. (2018). Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients, 10(7), 862. https://doi.org/10.3390/nu10070862 |
64. | Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evidence-based complementary and alternative medicine : eCAM, 2012, 364741. https://doi.org/10.1155/2012/364741 |
65. | Hughes, C., Davoodi-Semiromi, Y., Colee, J. C., Culpepper, T., Dahl, W. J., Mai, V., Christman, M. C., & Langkamp-Henken, B. (2011). Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. The American journal of clinical nutrition, 93(6), 1305–1311. https://doi.org/10.3945/ajcn.111.014126 |
66. | Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. Journal of ethnopharmacology, 143(2), 397–405. https://doi.org/10.1016/j.jep.2012.07.004 |
67. | Jäger, R., Purpura, M., Stone, J. D., Turner, S. M., Anzalone, A. J., Eimerbrink, M. J., Pane, M., Amoruso, A., Rowlands, D. S., & Oliver, J. M. (2016). Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients, 8(10), 642. https://doi.org/10.3390/nu8100642 |
68. | Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07 |
69. | Janssens, P. L., Penders, J., Hursel, R., Budding, A. E., Savelkoul, P. H., & Westerterp-Plantenga, M. S. (2016). Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PloS one, 11(4), e0153134. https://doi.org/10.1371/journal.pone.0153134 |
70. | Jaquet, M., Rochat, I., Moulin, J., Cavin, C., & Bibiloni, R. (2009). Impact of coffee consumption on the gut microbiota: a human volunteer study. International journal of food microbiology, 130(2), 117–121. https://doi.org/10.1016/j.ijfoodmicro.2009.01.011 |
71. | Jeukendrup, A. E., Vet-Joop, K., Sturk, A., Stegen, J. H., Senden, J., Saris, W. H., & Wagenmakers, A. J. (2000). Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clinical science (London, England : 1979), 98(1), 47–55. |
72. | Jost L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439. https://doi.org/10.1890/06-1736.1 |
73. | Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E., Castellani, J. W., Gundersen, Y., Hoke, A. V., Levangie, M. W., Kumar, R., Chakraborty, N., Gautam, A., Hammamieh, R., Martini, S., Montain, S. J., & Pasiakos, S. M. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American journal of physiology. Gastrointestinal and liver physiology, 312(6), G559–G571. https://doi.org/10.1152/ajpgi.00066.2017 |
74. | Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., & Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PloS one, 4(12), e8099. https://doi.org/10.1371/journal.pone.0008099 |
75. | Keohane, D. M., Woods, T., O'Connor, P., Underwood, S., Cronin, O., Whiston, R., O'Sullivan, O., Cotter, P., Shanahan, F., & Molloy, M. G. M. (2019). Four men in a boat: Ultra-endurance exercise alters the gut microbiome. Journal of science and medicine in sport, 22(9), 1059–1064. https://doi.org/10.1016/j.jsams.2019.04.004 |
76. | L'Huillier, C., Jarbeau, M., Achamrah, N., Belmonte, L., Amamou, A., Nobis, S., Goichon, A., Salameh, E., Bahlouli, W., do Rego, J. L., Déchelotte, P., & Coëffier, M. (2019). Glutamine, but not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients, 11(6), 1348. https://doi.org/10.3390/nu11061348 |
77. | Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of agricultural and food chemistry, 47(4), 1460–1466. https://doi.org/10.1021/jf981149l |
78. | Liu, W. Y., Lu, D. J., Du, X. M., Sun, J. Q., Ge, J., Wang, R. W., Wang, R., Zou, J., Xu, C., Ren, J., Wen, X. F., Liu, Y., Cheng, S. M., Tan, X., Pekkala, S., Munukka, E., Wiklund, P., Chen, Y. Q., Gu, Q., Xia, Z. C., … Cheng, S. (2014). Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men--the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC public health, 14, 48. https://doi.org/10.1186/1471-2458-14-48 |
79. | Lollo, P. C., Cruz, A. G., Morato, P. N., Moura, C. S., Carvalho-Silva, L. B., Oliveira, C. A., Faria, J. A., & Amaya-Farfan, J. (2012). Probiotic cheese attenuates exercise-induced immune suppression in Wistar rats. Journal of dairy science, 95(7), 3549–3558. https://doi.org/10.3168/jds.2011-5124 |
80. | Luo, B., Xiang, D., Nieman, D. C., & Chen, P. (2014). The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense. Brain, behavior, and immunity, 39, 99–106. https://doi.org/10.1016/j.bbi.2013.11.013 |
81. | Lyte, M., Li, W., Opitz, N., Gaykema, R. P., & Goehler, L. E. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiology & behavior, 89(3), 350–357. https://doi.org/10.1016/j.physbeh.2006.06.019 |
82. | Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–1283. https://doi.org/10.1136/gutjnl-2013-304833 |
83. | Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J., & Woods, J. A. (2019). Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exercise and sport sciences reviews, 47(2), 75–85. https://doi.org/10.1249/JES.0000000000000183 |
84. | Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1 Suppl), 230S–242S. https://doi.org/10.1093/ajcn/81.1.230S |
85. | Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. A., & Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME journal, 7(10), 1933–1943. https://doi.org/10.1038/ismej.2013.89 |
86. | Martarelli, D., Verdenelli, M. C., Scuri, S., Cocchioni, M., Silvi, S., Cecchini, C., & Pompei, P. (2011). Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current microbiology, 62(6), 1689–1696. https://doi.org/10.1007/s00284-011-9915-3 |
87. | Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936 |
88. | Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, biotechnology, and biochemistry, 72(2), 572–576. https://doi.org/10.1271/bbb.70474 |
89. | Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., Ljungqvist, A., … Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. British journal of sports medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027 |
90. | Mawdsley, J. E., & Rampton, D. S. (2006). The role of psychological stress in inflammatory bowel disease. Neuroimmunomodulation, 13(5-6), 327–336. https://doi.org/10.1159/000104861 |
91. | Messina, G., Dalia, C., Tafuri, D., Monda, V., Palmieri, F., Dato, A., Russo, A., De Blasio, S., Messina, A., De Luca, V., Chieffi, S., & Monda, M. (2014). Orexin-A controls sympathetic activity and eating behavior. Frontiers in psychology, 5, 997. https://doi.org/10.3389/fpsyg.2014.00997 |
92. | Michalickova, D., Kotur-Stevuljevic, J., Miljkovic, M., Dikic, N., Kostic-Vucicevic, M., Andjelkovic, M., Koricanac, V., & Djordjevic, B. (2018). Effects of Probiotic Supplementation on Selected Parameters of Blood Prooxidant-Antioxidant Balance in Elite Athletes: A Double-Blind Randomized Placebo-Controlled Study. Journal of human kinetics, 64, 111–122. https://doi.org/10.1515/hukin-2017-0203 |
93. | Mielgo-Ayuso, J., Marques-Jiménez, D., Refoyo, I., Del Coso, J., León-Guereño, P., & Calleja-González, J. (2019). Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients, 11(10), 2313. https://doi.org/10.3390/nu11102313 |
94. | Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015). Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PloS one, 10(5), e0125889. https://doi.org/10.1371/journal.pone.0125889 |
95. | Mills, S., Stanton, C., Lane, J. A., Smith, G. J., & Ross, R. P. (2019). Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 11(4), 923. https://doi.org/10.3390/nu11040923 |
96. | Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. Sports health, 14(6), 894–898. https://doi.org/10.1177/19417381211060006 |
97. | Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of agricultural and food chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326t |
98. | Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., Black, K., Gleeson, M., Pyne, D. B., Wells, S. D., Arent, S. M., Kreider, R. B., Campbell, B. I., Bannock, L., Scheiman, J., Wissent, C. J., Pane, M., Kalman, D. S., Pugh, J. N., … Antonio, J. (2020). The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1), 24. https://doi.org/10.1186/s12970-020-00353-w |
99. | Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., Viggiano, A., Cibelli, G., Chieffi, S., Monda, M., & Messina, G. (2017). Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative medicine and cellular longevity, 2017, 3831972. https://doi.org/10.1155/2017/3831972 |
100. | Moreno-Pérez, D., Bressa, C., Bailén, M., Hamed-Bousdar, S., Naclerio, F., Carmona, M., Pérez, M., González-Soltero, R., Montalvo-Lominchar, M. G., Carabaña, C., & Larrosa, M. (2018). Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study. Nutrients, 10(3), 337. https://doi.org/10.3390/nu10030337 |
101. | Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813 |
102. | O'Brien, K. V., Stewart, L. K., Forney, L. A., Aryana, K. J., Prinyawiwatkul, W., & Boeneke, C. A. (2015). The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. Journal of dairy science, 98(11), 7446–7449. https://doi.org/10.3168/jds.2015-9392 |
103. | O'Sullivan, O., Cronin, O., Clarke, S. F., Murphy, E. F., Molloy, M. G., Shanahan, F., & Cotter, P. D. (2015). Exercise and the microbiota. Gut microbes, 6(2), 131–136. https://doi.org/10.1080/19490976.2015.1011875 |
104. | Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. https://doi.org/10.1371/journal.pbio.0050177 |
105. | Paulsen, J. A., Ptacek, T. S., Carter, S. J., Liu, N., Kumar, R., Hyndman, L., Lefkowitz, E. J., Morrow, C. D., & Rogers, L. Q. (2017). Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 25(5), 1563–1570. https://doi.org/10.1007/s00520-016-3568-5 |
106. | Peppler, W. T., Anderson, Z. G., Sutton, C. D., Rector, R. S., & Wright, D. C. (2016). Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice. American journal of physiology. Regulatory, integrative and comparative physiology, 310(10), R934–R942. https://doi.org/10.1152/ajpregu.00497.2015 |
107. | Perna, S., Alalwan, T. A., Alaali, Z., Alnashaba, T., Gasparri, C., Infantino, V., Hammad, L., Riva, A., Petrangolini, G., Allegrini, P., & Rondanelli, M. (2019). The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review. International journal of molecular sciences, 20(20), 5232. https://doi.org/10.3390/ijms20205232 |
108. | Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., Sodergren, E., & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. https://doi.org/10.1186/s40168-017-0320-4 |
109. | Philp, A., Hargreaves, M., Baar, K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol - Endocrinol Metab. 2012;302(11). |
110. | Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., & Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS one, 9(4), e93827. https://doi.org/10.1371/journal.pone.0093827 |
111. | Przewłócka, K., Folwarski, M., Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., & Kaczor, J. J. (2020). Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients, 12(5), 1451. https://doi.org/10.3390/nu12051451 |
112. | Pugh, J. N., Sparks, A. S., Doran, D. A., Fleming, S. C., Langan-Evans, C., Kirk, B., Fearn, R., Morton, J. P., & Close, G. L. (2019). Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. European journal of applied physiology, 119(7), 1491–1501. https://doi.org/10.1007/s00421-019-04136-3 |
113. | Qiao, Y., Sun, J., Ding, Y., Le, G., & Shi, Y. (2013). Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied microbiology and biotechnology, 97(4), 1689–1697. https://doi.org/10.1007/s00253-012-4323-6 |
114. | Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., Casanueva, F., & Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8(5), e65465. https://doi.org/10.1371/journal.pone.0065465 |
115. | Quigley E. M. (2009). Do Patients with Functional Gastrointestinal Disorders have an Altered Gut Flora?. Therapeutic advances in gastroenterology, 2(4), 23–30. https://doi.org/10.1177/1756283X09335636 |
116. | Rajilić-Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S., & de Vos, W. M. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141(5), 1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043 |
117. | Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118(2), 229–241. https://doi.org/10.1016/j.cell.2004.07.002 |
118. | Rao, A. V., Bested, A. C., Beaulne, T. M., Katzman, M. A., Iorio, C., Berardi, J. M., & Logan, A. C. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut pathogens, 1(1), 6. https://doi.org/10.1186/1757-4749-1-6 |
119. | Ren, M., Zhang, S. H., Zeng, X. F., Liu, H., & Qiao, S. Y. (2015). Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. Asian-Australasian journal of animal sciences, 28(12), 1742–1750. https://doi.org/10.5713/ajas.14.0131 |
120. | Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L. R., Scaldaferri, F., Pulcini, G., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393 |
121. | Rodriguez-Miguelez, P., Fernandez-Gonzalo, R., Almar, M., Mejías, Y., Rivas, A., de Paz, J. A., Cuevas, M. J., & González-Gallego, J. (2014). Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordrecht, Netherlands), 36(6), 9734. https://doi.org/10.1007/s11357-014-9734-0 |
122. | Rowland, I., Capurso, L., Collins, K., Cummings, J., Delzenne, N., Goulet, O., Guarner, F., Marteau, P., & Meier, R. (2010). Current level of consensus on probiotic science--report of an expert meeting--London, 23 November 2009. Gut microbes, 1(6), 436–439. https://doi.org/10.4161/gmic.1.6.13610 |
123. | Ruiz-Iglesias, P., Estruel-Amades, S., Massot-Cladera, M., Franch, À., Pérez-Cano, F. J., & Castell, M. (2022). Rat Mucosal Immunity following an Intensive Chronic Training and an Exhausting Exercise: Effect of Hesperidin Supplementation. Nutrients, 15(1), 133. https://doi.org/10.3390/nu15010133 |
124. | Rycroft, A. N., & Garside, L. H. (2000). Actinobacillus species and their role in animal disease. Veterinary journal (London, England : 1997), 159(1), 18–36. https://doi.org/10.1053/tvjl.1999.0403 |
125. | Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M., & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772. https://doi.org/10.1073/pnas.0808567105 |
126. | Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M., & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104–1109. https://doi.org/10.1038/s41591-019-0485-4 |
127. | Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics--approaching a definition. The American journal of clinical nutrition, 73(2 Suppl), 361S–364S. https://doi.org/10.1093/ajcn/73.2.361s |
128. | Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., & Kimura, I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific reports, 9(1), 16574. https://doi.org/10.1038/s41598-019-53242-x |
129. | Soares, A. D. N., Wanner, S. P., Morais, E. S. S., Hudson, A. S. R., Martins, F. S., & Cardoso, V. N. (2019). Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients, 11(10), 2352. https://doi.org/10.3390/nu11102352 |
130. | Spriet L. L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports medicine (Auckland, N.Z.), 44 Suppl 1(Suppl 1), S87–S96. https://doi.org/10.1007/s40279-014-0154-1 |
131. | Spyropoulos, B. G., Misiakos, E. P., Fotiadis, C., & Stoidis, C. N. (2011). Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Digestive diseases and sciences, 56(2), 285–294. https://doi.org/10.1007/s10620-010-1307-1 |
132. | Stilling, R. M., Ryan, F. J., Hoban, A. E., Shanahan, F., Clarke, G., Claesson, M. J., Dinan, T. G., & Cryan, J. F. (2015). Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, behavior, and immunity, 50, 209–220. https://doi.org/10.1016/j.bbi.2015.07.009 |
133. | Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P., & Lochs, H. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. Journal of clinical microbiology, 43(7), 3380–3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005 |
134. | Tannock G. W. (2007). What immunologists should know about bacterial communities of the human bowel. Seminars in immunology, 19(2), 94–105. https://doi.org/10.1016/j.smim.2006.09.001 |
135. | Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. https://doi.org/10.1016/j.jand.2015.12.006 |
136. | Trovato, F. M., Martines, G. F., Brischetto, D., Catalano, D., Musumeci, G., & Trovato, G. M. (2016). Fatty liver disease and lifestyle in youngsters: diet, food intake frequency, exercise, sleep shortage and fashion. Liver international : official journal of the International Association for the Study of the Liver, 36(3), 427–433. https://doi.org/10.1111/liv.12957 |
137. | Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American journal of clinical nutrition, 93(1), 62–72. https://doi.org/10.3945/ajcn.110.000075 |
138. | Ünsal, C., Ünsal, H., Ekici, M., Koç Yildirim, E., Üner, A. G., Yildiz, M., Güleş, Ö., Ekren Aşici, G. S., Boyacioğlu, M., Balkaya, M., & Belge, F. (2018). The effects of exhaustive swimming and probiotic administration in trained rats: Oxidative balance of selected organs, colon morphology, and contractility. Physiology international, 105(4), 309–324. https://doi.org/10.1556/2060.105.2018.4.25 |
139. | van Hall G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta physiologica (Oxford, England), 199(4), 499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x |
140. | Veldurthy, V., Wei, R., Oz, L., Dhawan, P., Jeon, Y. H., & Christakos, S. (2016). Vitamin D, calcium homeostasis and aging. Bone research, 4, 16041. https://doi.org/10.1038/boneres.2016.41 |
141. | Viloria, M., Lara-Padilla, E., Campos-Rodríguez, R., Jarillo-Luna, A., Reyna-Garfias, H., López-Sánchez, P., Rivera-Aguilar, V., Salas-Casas, A., Berral de la Rosa, F. J., & García-Latorre, E. (2011). Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunological investigations, 40(6), 640–656. https://doi.org/10.3109/08820139.2011.575425 |
142. | Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., Fleshner, M., Green, C., Pedersen, B. K., Hoffman-Goetz, L., Rogers, C. J., Northoff, H., Abbasi, A., & Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise immunology review, 17, 6–63. |
143. | Welly, R. J., Liu, T. W., Zidon, T. M., Rowles, J. L., 3rd, Park, Y. M., Smith, T. N., Swanson, K. S., Padilla, J., & Vieira-Potter, V. J. (2016). Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Medicine and science in sports and exercise, 48(9), 1688–1698. https://doi.org/10.1249/MSS.0000000000000964 |
144. | Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong, F. S., Szot, G. L., Bluestone, J. A., Gordon, J. I., & Chervonsky, A. V. (2008). Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455(7216), 1109–1113. https://doi.org/10.1038/nature07336 |
145. | West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., Christophersen, C. T., Conlon, M. A., & Fricker, P. A. (2011). Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutrition journal, 10, 30. https://doi.org/10.1186/1475-2891-10-30 |
146. | Williams N. T. (2010). Probiotics. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists, 67(6), 449–458. https://doi.org/10.2146/ajhp090168 |
147. | Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.), 334(6052), 105–108. https://doi.org/10.1126/science.1208344 |
148. | Yang Z, Huang S, Zou D, Dong D, He X, Liu N, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids. 2016;48(12):2731–45. |
149. | Yang, Y., Shi, Y., Wiklund, P., Tan, X., Wu, N., Zhang, X., Tikkanen, O., Zhang, C., Munukka, E., & Cheng, S. (2017). The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 9(8), 792. https://doi.org/10.3390/nu9080792 |
150. | Zhao, X., Zhang, Z., Hu, B., Huang, W., Yuan, C., & Zou, L. (2018). Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Frontiers in microbiology, 9, 765. https://doi.org/10.3389/fmicb.2018.00765 |
151. | Zhou, H., Yu, B., Gao, J., Htoo, J. K., & Chen, D. (2018). Regulation of intestinal health by branched-chain amino acids. Animal science journal = Nihon chikusan Gakkaiho, 89(1), 3–11. https://doi.org/10.1111/asj.12937 |
152. | Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. S., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature genetics, 50(6), 790–795. https://doi.org/10.1038/s41588-018-0135-7 |