Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2024.1-03
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 45, No. 1/2024
Relationship between Gut-Microbiota and Sport Activity

Autorzy: Alì Mokarrami ORCID
Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy

Annunziata Capacci ORCID
Department of Aging, Orthopedic and Rheumatologic Sciences, A. Gemelli General Hospital Foundation - IRCCS, 00168 Rome, Italy

Beatrice Trio ORCID
Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy

Giuseppe Merra ORCID
Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy/ Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy

David Della Morte Canosci ORCID
Physical Activity and Health Promotion Course, University of Rome Tor Vergata, Rome, Italy
Słowa kluczowe: endurance; exercise; immune response; microbiota; nutrition; probiotics
Data publikacji całości:2024
Liczba stron:29 (25-53)
Cited-by (Crossref) ?:

Abstrakt

Aim: The purpose of this umbrella review is to bring together the most recent reviews concerning the relationship between gut-microbiota and sport activity. Materials and Methods: A literature search was conducted through PubMed and focused on reviews and systematic reviews published between 2015 and June 2021 that dealt with the topic of microbiota and physical activity. Only articles written in English and published in peer-reviewed journals were considered. Key words related to the term microbiota alone or in conjunction with other terms such as "supplements", "diet", "probiotics", "prebiotics", "health", "physical activity", and "pathogens" were analyzed. The selection process was done first by analyzing the titles, then the abstracts, and finally the full text. Results: After screening the title and abstract, 29 articles were excluded. Therefore, 20 studies were included in the present umbrella review. The figure shows the steps of the selection process (Figure 1). The specifications of the presented articles are listed in Table 2. Conclusions: Exercise appears to be an environmental factor that can determine changes in the gut microbial composition with possible benefits for the host. Increased microbiota diversity improves metabolic profile and immunological responses and may provide a possible biomarker for health improvement. Exercise altered microbiota could be used to look for new approaches in the treatment of metabolic and inflammatory diseases.
Pobierz plik

Plik artykułu

Bibliografia

1.Abboud, K. Y., Reis, S. K., Martelli, M. E., Zordão, O. P., Tannihão, F., de Souza, A. Z. Z., Assalin, H. B., Guadagnini, D., Rocha, G. Z., Saad, M. J. A., & Prada, P. O. (2019). Oral Glutamine Supplementation Reduces Obesity, Pro-Inflammatory Markers, and Improves Insulin Sensitivity in DIO Wistar Rats and Reduces Waist Circumference in Overweight and Obese Humans. Nutrients, 11(3), 536. https://doi.org/10.3390/nu11030536
2.Akira, S., & Hemmi, H. (2003). Recognition of pathogen-associated molecular patterns by TLR family. Immunology letters, 85(2), 85–95. https://doi.org/10.1016/s0165-2478(02)00228-6
3.Allen, J. M., Mailing, L. J., Cohrs, J., Salmonson, C., Fryer, J. D., Nehra, V., Hale, V. L., Kashyap, P., White, B. A., & Woods, J. A. (2018). Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut microbes, 9(2), 115–130. https://doi.org/10.1080/19490976.2017.1372077
4.Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T. V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., & Marette, A. (2015). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 64(6), 872–883. https://doi.org/10.1136/gutjnl-2014-307142
5.Appukutty, M., Ramasamy, K., Rajan, S., Vellasamy, S., Ramasamy, R., & Radhakrishnan, A. K. (2015). Effect of orally administered soy milk fermented with Lactobacillus plantarum LAB12 and physical exercise on murine immune responses. Beneficial microbes, 6(4), 491–496. https://doi.org/10.3920/BM2014.0129
6.Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science (New York, N.Y.), 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816
7.Balducci, S., Zanuso, S., Nicolucci, A., Fernando, F., Cavallo, S., Cardelli, P., Fallucca, S., Alessi, E., Letizia, C., Jimenez, A., Fallucca, F., & Pugliese, G. (2010). Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutrition, metabolism, and cardiovascular diseases : NMCD, 20(8), 608–617. https://doi.org/10.1016/j.numecd.2009.04.015
8.Barton, W., Penney, N. C., Cronin, O., Garcia-Perez, I., Molloy, M. G., Holmes, E., Shanahan, F., Cotter, P. D., & O'Sullivan, O. (2018). The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 67(4), 625–633. https://doi.org/10.1136/gutjnl-2016-313627
9.Benton, D., Williams, C., & Brown, A. (2007). Impact of consuming a milk drink containing a probiotic on mood and cognition. European journal of clinical nutrition, 61(3), 355–361. https://doi.org/10.1038/sj.ejcn.1602546
10.Brandt, N., Gunnarsson, T. P., Hostrup, M., Tybirk, J., Nybo, L., Pilegaard, H., & Bangsbo, J. (2016). Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle. Physiological reports, 4(14), e12844. https://doi.org/10.14814/phy2.12844
11.Braune, A., & Blaut, M. (2016). Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut microbes, 7(3), 216–234. https://doi.org/10.1080/19490976.2016.1158395
12.Bressa, C., Bailén-Andrino, M., Pérez-Santiago, J., González-Soltero, R., Pérez, M., Montalvo-Lominchar, M. G., Maté-Muñoz, J. L., Domínguez, R., Moreno, D., & Larrosa, M. (2017). Differences in gut microbiota profile between women with active lifestyle and sedentary women. PloS one, 12(2), e0171352. https://doi.org/10.1371/journal.pone.0171352
13.Brinkmann, C., Chung, N., Schmidt, U., Kreutz, T., Lenzen, E., Schiffer, T., Geisler, S., Graf, C., Montiel-Garcia, G., Renner, R., Bloch, W., & Brixius, K. (2012). Training alters the skeletal muscle antioxidative capacity in non-insulin-dependent type 2 diabetic men. Scandinavian journal of medicine & science in sports, 22(4), 462–470. https://doi.org/10.1111/j.1600-0838.2010.01273.x
14.Burke, L. M., Ross, M. L., Garvican-Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., Mirtschin, J. G., Cato, L. E., Strobel, N., Sharma, A. P., & Hawley, J. A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. The Journal of physiology, 595(9), 2785–2807. https://doi.org/10.1113/JP273230
15.Campbell, S. C., Wisniewski, P. J., Noji, M., McGuinness, L. R., Häggblom, M. M., Lightfoot, S. A., Joseph, L. B., & Kerkhof, L. J. (2016). The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PloS one, 11(3), e0150502. https://doi.org/10.1371/journal.pone.0150502
16.Cani, P. D., Lecourt, E., Dewulf, E. M., Sohet, F. M., Pachikian, B. D., Naslain, D., De Backer, F., Neyrinck, A. M., & Delzenne, N. M. (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American journal of clinical nutrition, 90(5), 1236–1243. https://doi.org/10.3945/ajcn.2009.28095
17.Carbajo-Pescador, S., Porras, D., García-Mediavilla, M. V., Martínez-Flórez, S., Juarez-Fernández, M., Cuevas, M. J., Mauriz, J. L., González-Gallego, J., Nistal, E., & Sánchez-Campos, S. (2019). Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. Disease models & mechanisms, 12(5), dmm039206. https://doi.org/10.1242/dmm.039206
18.Castell, L. M., Poortmans, J. R., Leclercq, R., Brasseur, M., Duchateau, J., & Newsholme, E. A. (1997). Some aspects of the acute phase response after a marathon race, and the effects of glutamine supplementation. European journal of applied physiology and occupational physiology, 75(1), 47–53. https://doi.org/10.1007/s004210050125
19.Cerdá, B., Pérez, M., Pérez-Santiago, J. D., Tornero-Aguilera, J. F., González-Soltero, R., & Larrosa, M. (2016). Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health?. Frontiers in physiology, 7, 51. https://doi.org/10.3389/fphys.2016.00051
20.Chassard, C., & Lacroix, C. (2013). Carbohydrates and the human gut microbiota. Current opinion in clinical nutrition and metabolic care, 16(4), 453–460. https://doi.org/10.1097/MCO.0b013e3283619e63
21.Choi, J. J., Eum, S. Y., Rampersaud, E., Daunert, S., Abreu, M. T., & Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environmental health perspectives, 121(6), 725–730. https://doi.org/10.1289/ehp.1306534
22.Churchward-Venne, T. A., Burd, N. A., Mitchell, C. J., West, D. W., Philp, A., Marcotte, G. R., Baker, S. K., Baar, K., & Phillips, S. M. (2012). Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of physiology, 590(11), 2751–2765. https://doi.org/10.1113/jphysiol.2012.228833
23.Clarke, S. F., Murphy, E. F., O'Sullivan, O., Lucey, A. J., Humphreys, M., Hogan, A., Hayes, P., O'Reilly, M., Jeffery, I. B., Wood-Martin, R., Kerins, D. M., Quigley, E., Ross, R. P., O'Toole, P. W., Molloy, M. G., Falvey, E., Shanahan, F., & Cotter, P. D. (2014). Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 63(12), 1913–1920. https://doi.org/10.1136/gutjnl-2013-306541
24.Close, G. L., Hamilton, D. L., Philp, A., Burke, L. M., & Morton, J. P. (2016). New strategies in sport nutrition to increase exercise performance. Free radical biology & medicine, 98, 144–158. https://doi.org/10.1016/j.freeradbiomed.2016.01.016
25.Coffey, V. G., & Hawley, J. A. (2017). Concurrent exercise training: do opposites distract?. The Journal of physiology, 595(9), 2883–2896. https://doi.org/10.1113/JP272270
26.Conlon, M. A., & Bird, A. R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17–44. https://doi.org/10.3390/nu7010017
27.Cook, M. D., Martin, S. A., Williams, C., Whitlock, K., Wallig, M. A., Pence, B. D., & Woods, J. A. (2013). Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain, behavior, and immunity, 33, 46–56. https://doi.org/10.1016/j.bbi.2013.05.005
28.Crawford, M., Whisner, C., Al-Nakkash, L., & Sweazea, K. L. (2019). Six-Week High-Fat Diet Alters the Gut Microbiome and Promotes Cecal Inflammation, Endotoxin Production, and Simple Steatosis without Obesity in Male Rats. Lipids, 54(2-3), 119–131. https://doi.org/10.1002/lipd.12131
29.Cronin, O., Barton, W., Skuse, P., Penney, N. C., Garcia-Perez, I., Murphy, E. F., Woods, T., Nugent, H., Fanning, A., Melgar, S., Falvey, E. C., Holmes, E., Cotter, P. D., O'Sullivan, O., Molloy, M. G., & Shanahan, F. (2018). A Prospective Metagenomic and Metabolomic Analysis of the Impact of Exercise and/or Whey Protein Supplementation on the Gut Microbiome of Sedentary Adults. mSystems, 3(3), e00044-18. https://doi.org/10.1128/mSystems.00044-18
30.den Hartigh L. J. (2019). Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients, 11(2), 370. https://doi.org/10.3390/nu11020370
31.Derrien, M., Belzer, C., & de Vos, W. M. (2017). Akkermansia muciniphila and its role in regulating host functions. Microbial pathogenesis, 106, 171–181. https://doi.org/10.1016/j.micpath.2016.02.005
32.Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., & Dinan, T. G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. Journal of psychiatric research, 43(2), 164–174. https://doi.org/10.1016/j.jpsychires.2008.03.009
33.Dhillon, J., Li, Z., & Ortiz, R. M. (2019). Almond Snacking for 8 wk Increases Alpha-Diversity of the Gastrointestinal Microbiome and Decreases Bacteroides fragilis Abundance Compared with an Isocaloric Snack in College Freshmen. Current developments in nutrition, 3(8), nzz079. https://doi.org/10.1093/cdn/nzz079
34.Donati Zeppa, S., Agostini, D., Gervasi, M., Annibalini, G., Amatori, S., Ferrini, F., Sisti, D., Piccoli, G., Barbieri, E., Sestili, P., & Stocchi, V. (2019). Mutual Interactions among Exercise, Sport Supplements and Microbiota. Nutrients, 12(1), 17. https://doi.org/10.3390/nu12010017
35.Doyle, A., Zhang, G., Abdel Fattah, E. A., Eissa, N. T., & Li, Y. P. (2011). Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 25(1), 99–110. https://doi.org/10.1096/fj.10-164152
36.Elliott-Sale, K. J., Tenforde, A. S., Parziale, A. L., Holtzman, B., & Ackerman, K. E. (2018). Endocrine Effects of Relative Energy Deficiency in Sport. International journal of sport nutrition and exercise metabolism, 28(4), 335–349. https://doi.org/10.1123/ijsnem.2018-0127
37.Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochemical pharmacology, 139, 82–93. https://doi.org/10.1016/j.bcp.2017.04.033
38.Estaki, M., Pither, J., Baumeister, P., Little, J. P., Gill, S. K., Ghosh, S., Ahmadi-Vand, Z., Marsden, K. R., & Gibson, D. L. (2016). Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome, 4(1), 42. https://doi.org/10.1186/s40168-016-0189-7
39.Etxeberria, U., Arias, N., Boqué, N., Macarulla, M. T., Portillo, M. P., Martínez, J. A., & Milagro, F. I. (2015). Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. The Journal of nutritional biochemistry, 26(6), 651–660. https://doi.org/10.1016/j.jnutbio.2015.01.002
40.Evans, C. C., LePard, K. J., Kwak, J. W., Stancukas, M. C., Laskowski, S., Dougherty, J., Moulton, L., Glawe, A., Wang, Y., Leone, V., Antonopoulos, D. A., Smith, D., Chang, E. B., & Ciancio, M. J. (2014). Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one, 9(3), e92193. https://doi.org/10.1371/journal.pone.0092193
41.Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 9066–9071. https://doi.org/10.1073/pnas.1219451110
42.Fakharian, F., Asgari, B., Nabavi-Rad, A., Sadeghi, A., Soleimani, N., Yadegar, A., & Zali, M. R. (2022). The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Frontiers in cellular and infection microbiology, 12, 953718. https://doi.org/10.3389/fcimb.2022.953718
43.Fava, F., Lovegrove, J. A., Gitau, R., Jackson, K. G., & Tuohy, K. M. (2006). The gut microbiota and lipid metabolism: implications for human health and coronary heart disease. Current medicinal chemistry, 13(25), 3005–3021. https://doi.org/10.2174/092986706778521814
44.Fielding, R., Riede, L., Lugo, J. P., & Bellamine, A. (2018). l-Carnitine Supplementation in Recovery after Exercise. Nutrients, 10(3), 349. https://doi.org/10.3390/nu10030349
45.Fothergill, E., Guo, J., Howard, L., Kerns, J. C., Knuth, N. D., Brychta, R., Chen, K. Y., Skarulis, M. C., Walter, M., Walter, P. J., & Hall, K. D. (2016). Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. Obesity (Silver Spring, Md.), 24(8), 1612–1619. https://doi.org/10.1002/oby.21538
46.Francaux, M. (2009). Toll-like receptor signalling induced by endurance exercise. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 34(3), 454–458. https://doi.org/10.1139/H09-036
47.Frisard, M. I., McMillan, R. P., Marchand, J., Wahlberg, K. A., Wu, Y., Voelker, K. A., Heilbronn, L., Haynie, K., Muoio, B., Li, L., & Hulver, M. W. (2010). Toll-like receptor 4 modulates skeletal muscle substrate metabolism. American journal of physiology. Endocrinology and metabolism, 298(5), E988–E998. https://doi.org/10.1152/ajpendo.00307.2009
48.Frosali, S., Pagliari, D., Gambassi, G., Landolfi, R., Pandolfi, F., & Cianci, R. (2015). How the Intricate Interaction among Toll-Like Receptors, Microbiota, and Intestinal Immunity Can Influence Gastrointestinal Pathology. Journal of immunology research, 2015, 489821. https://doi.org/10.1155/2015/489821
49.Gentile, C. L., & Weir, T. L. (2018). The gut microbiota at the intersection of diet and human health. Science (New York, N.Y.), 362(6416), 776–780. https://doi.org/10.1126/science.aau5812
50.Ghonimy, A., Zhang, D. M., Farouk, M. H., & Wang, Q. (2018). The Impact of Carnitine on Dietary Fiber and Gut Bacteria Metabolism and Their Mutual Interaction in Monogastrics. International journal of molecular sciences, 19(4), 1008. https://doi.org/10.3390/ijms19041008
51.Gleeson, M., Bishop, N. C., Oliveira, M., & Tauler, P. (2011). Daily probiotic's (Lactobacillus casei Shirota) reduction of infection incidence in athletes. International journal of sport nutrition and exercise metabolism, 21(1), 55–64. https://doi.org/10.1123/ijsnem.21.1.55
52.González-Sarrías A, Espín JC, Tomás-Barberán FA. (2017). Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical-scavenging effects. Trends Food Sci Technol [Internet]. 2017(69),:281 http://dx.doi.org/10.1016/j.tifs.2017.07.010
53.Goodrich, J. K., Di Rienzi, S. C., Poole, A. C., Koren, O., Walters, W. A., Caporaso, J. G., Knight, R., & Ley, R. E. (2014). Conducting a microbiome study. Cell, 158(2), 250–262. https://doi.org/10.1016/j.cell.2014.06.037
54.Gruenwald, J., Graubaum, H. J., & Harde, A. (2002). Effect of a probiotic multivitamin compound on stress and exhaustion. Advances in therapy, 19(3), 141–150. https://doi.org/10.1007/BF02850270
55.Grundlingh, J., Dargan, P. I., El-Zanfaly, M., & Wood, D. M. (2011). 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. Journal of medical toxicology : official journal of the American College of Medical Toxicology, 7(3), 205–212. https://doi.org/10.1007/s13181-011-0162-6
56.Hagio, M., Matsumoto, M., Yajima, T., Hara, H., & Ishizuka, S. (2010). Voluntary wheel running exercise and dietary lactose concomitantly reduce proportion of secondary bile acids in rat feces. Journal of applied physiology (Bethesda, Md. : 1985), 109(3), 663–668. https://doi.org/10.1152/japplphysiol.00777.2009
57.Hassan, Y., Head, V., Jacob, D., Bachmann, M. O., Diu, S., & Ford, J. (2016). Lifestyle interventions for weight loss in adults with severe obesity: a systematic review. Clinical obesity, 6(6), 395–403. https://doi.org/10.1111/cob.12161
58.Haywood, B. A., Black, K. E., Baker, D., McGarvey, J., Healey, P., & Brown, R. C. (2014). Probiotic supplementation reduces the duration and incidence of infections but not severity in elite rugby union players. Journal of science and medicine in sport, 17(4), 356–360. https://doi.org/10.1016/j.jsams.2013.08.004
59.Heintz-Buschart, A., & Wilmes, P. (2018). Human Gut Microbiome: Function Matters. Trends in microbiology, 26(7), 563–574. https://doi.org/10.1016/j.tim.2017.11.002
60.Hoffman-Goetz, L., Pervaiz, N., & Guan, J. (2009). Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes. Brain, behavior, and immunity, 23(4), 498–506. https://doi.org/10.1016/j.bbi.2009.01.015
61.Hoffman-Goetz, L., Pervaiz, N., Packer, N., & Guan, J. (2010). Freewheel training decreases pro- and increases anti-inflammatory cytokine expression in mouse intestinal lymphocytes. Brain, behavior, and immunity, 24(7), 1105–1115. https://doi.org/10.1016/j.bbi.2010.05.001
62.Holzapfel, W. H., Haberer, P., Snel, J., Schillinger, U., & Huis in't Veld, J. H. (1998). Overview of gut flora and probiotics. International journal of food microbiology, 41(2), 85–101. https://doi.org/10.1016/s0168-1605(98)00044-0
63.Hsu, Y. J., Huang, W. C., Lin, J. S., Chen, Y. M., Ho, S. T., Huang, C. C., & Tung, Y. T. (2018). Kefir Supplementation Modifies Gut Microbiota Composition, Reduces Physical Fatigue, and Improves Exercise Performance in Mice. Nutrients, 10(7), 862. https://doi.org/10.3390/nu10070862
64.Huang, C. C., Hsu, M. C., Huang, W. C., Yang, H. R., & Hou, C. C. (2012). Triterpenoid-Rich Extract from Antrodia camphorata Improves Physical Fatigue and Exercise Performance in Mice. Evidence-based complementary and alternative medicine : eCAM, 2012, 364741. https://doi.org/10.1155/2012/364741
65.Hughes, C., Davoodi-Semiromi, Y., Colee, J. C., Culpepper, T., Dahl, W. J., Mai, V., Christman, M. C., & Langkamp-Henken, B. (2011). Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. The American journal of clinical nutrition, 93(6), 1305–1311. https://doi.org/10.3945/ajcn.111.014126
66.Ismail, T., Sestili, P., & Akhtar, S. (2012). Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. Journal of ethnopharmacology, 143(2), 397–405. https://doi.org/10.1016/j.jep.2012.07.004
67.Jäger, R., Purpura, M., Stone, J. D., Turner, S. M., Anzalone, A. J., Eimerbrink, M. J., Pane, M., Amoruso, A., Rowlands, D. S., & Oliver, J. M. (2016). Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients, 8(10), 642. https://doi.org/10.3390/nu8100642
68.Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology, 45(9), 2761–2764. https://doi.org/10.1128/JCM.01228-07
69.Janssens, P. L., Penders, J., Hursel, R., Budding, A. E., Savelkoul, P. H., & Westerterp-Plantenga, M. S. (2016). Long-Term Green Tea Supplementation Does Not Change the Human Gut Microbiota. PloS one, 11(4), e0153134. https://doi.org/10.1371/journal.pone.0153134
70.Jaquet, M., Rochat, I., Moulin, J., Cavin, C., & Bibiloni, R. (2009). Impact of coffee consumption on the gut microbiota: a human volunteer study. International journal of food microbiology, 130(2), 117–121. https://doi.org/10.1016/j.ijfoodmicro.2009.01.011
71.Jeukendrup, A. E., Vet-Joop, K., Sturk, A., Stegen, J. H., Senden, J., Saris, W. H., & Wagenmakers, A. J. (2000). Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clinical science (London, England : 1979), 98(1), 47–55.
72.Jost L. (2007). Partitioning diversity into independent alpha and beta components. Ecology, 88(10), 2427–2439. https://doi.org/10.1890/06-1736.1
73.Karl, J. P., Margolis, L. M., Madslien, E. H., Murphy, N. E., Castellani, J. W., Gundersen, Y., Hoke, A. V., Levangie, M. W., Kumar, R., Chakraborty, N., Gautam, A., Hammamieh, R., Martini, S., Montain, S. J., & Pasiakos, S. M. (2017). Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American journal of physiology. Gastrointestinal and liver physiology, 312(6), G559–G571. https://doi.org/10.1152/ajpgi.00066.2017
74.Kaushik, J. K., Kumar, A., Duary, R. K., Mohanty, A. K., Grover, S., & Batish, V. K. (2009). Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PloS one, 4(12), e8099. https://doi.org/10.1371/journal.pone.0008099
75.Keohane, D. M., Woods, T., O'Connor, P., Underwood, S., Cronin, O., Whiston, R., O'Sullivan, O., Cotter, P., Shanahan, F., & Molloy, M. G. M. (2019). Four men in a boat: Ultra-endurance exercise alters the gut microbiome. Journal of science and medicine in sport, 22(9), 1059–1064. https://doi.org/10.1016/j.jsams.2019.04.004
76.L'Huillier, C., Jarbeau, M., Achamrah, N., Belmonte, L., Amamou, A., Nobis, S., Goichon, A., Salameh, E., Bahlouli, W., do Rego, J. L., Déchelotte, P., & Coëffier, M. (2019). Glutamine, but not Branched-Chain Amino Acids, Restores Intestinal Barrier Function during Activity-Based Anorexia. Nutrients, 11(6), 1348. https://doi.org/10.3390/nu11061348
77.Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of agricultural and food chemistry, 47(4), 1460–1466. https://doi.org/10.1021/jf981149l
78.Liu, W. Y., Lu, D. J., Du, X. M., Sun, J. Q., Ge, J., Wang, R. W., Wang, R., Zou, J., Xu, C., Ren, J., Wen, X. F., Liu, Y., Cheng, S. M., Tan, X., Pekkala, S., Munukka, E., Wiklund, P., Chen, Y. Q., Gu, Q., Xia, Z. C., … Cheng, S. (2014). Effect of aerobic exercise and low carbohydrate diet on pre-diabetic non-alcoholic fatty liver disease in postmenopausal women and middle aged men--the role of gut microbiota composition: study protocol for the AELC randomized controlled trial. BMC public health, 14, 48. https://doi.org/10.1186/1471-2458-14-48
79.Lollo, P. C., Cruz, A. G., Morato, P. N., Moura, C. S., Carvalho-Silva, L. B., Oliveira, C. A., Faria, J. A., & Amaya-Farfan, J. (2012). Probiotic cheese attenuates exercise-induced immune suppression in Wistar rats. Journal of dairy science, 95(7), 3549–3558. https://doi.org/10.3168/jds.2011-5124
80.Luo, B., Xiang, D., Nieman, D. C., & Chen, P. (2014). The effects of moderate exercise on chronic stress-induced intestinal barrier dysfunction and antimicrobial defense. Brain, behavior, and immunity, 39, 99–106. https://doi.org/10.1016/j.bbi.2013.11.013
81.Lyte, M., Li, W., Opitz, N., Gaykema, R. P., & Goehler, L. E. (2006). Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiology & behavior, 89(3), 350–357. https://doi.org/10.1016/j.physbeh.2006.06.019
82.Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275–1283. https://doi.org/10.1136/gutjnl-2013-304833
83.Mailing, L. J., Allen, J. M., Buford, T. W., Fields, C. J., & Woods, J. A. (2019). Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health. Exercise and sport sciences reviews, 47(2), 75–85. https://doi.org/10.1249/JES.0000000000000183
84.Manach, C., Williamson, G., Morand, C., Scalbert, A., & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition, 81(1 Suppl), 230S–242S. https://doi.org/10.1093/ajcn/81.1.230S
85.Marcobal, A., Kashyap, P. C., Nelson, T. A., Aronov, P. A., Donia, M. S., Spormann, A., Fischbach, M. A., & Sonnenburg, J. L. (2013). A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. The ISME journal, 7(10), 1933–1943. https://doi.org/10.1038/ismej.2013.89
86.Martarelli, D., Verdenelli, M. C., Scuri, S., Cocchioni, M., Silvi, S., Cecchini, C., & Pompei, P. (2011). Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Current microbiology, 62(6), 1689–1696. https://doi.org/10.1007/s00284-011-9915-3
87.Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936
88.Matsumoto, M., Inoue, R., Tsukahara, T., Ushida, K., Chiji, H., Matsubara, N., & Hara, H. (2008). Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Bioscience, biotechnology, and biochemistry, 72(2), 572–576. https://doi.org/10.1271/bbb.70474
89.Maughan, R. J., Burke, L. M., Dvorak, J., Larson-Meyer, D. E., Peeling, P., Phillips, S. M., Rawson, E. S., Walsh, N. P., Garthe, I., Geyer, H., Meeusen, R., van Loon, L. J. C., Shirreffs, S. M., Spriet, L. L., Stuart, M., Vernec, A., Currell, K., Ali, V. M., Budgett, R. G., Ljungqvist, A., … Engebretsen, L. (2018). IOC consensus statement: dietary supplements and the high-performance athlete. British journal of sports medicine, 52(7), 439–455. https://doi.org/10.1136/bjsports-2018-099027
90.Mawdsley, J. E., & Rampton, D. S. (2006). The role of psychological stress in inflammatory bowel disease. Neuroimmunomodulation, 13(5-6), 327–336. https://doi.org/10.1159/000104861
91.Messina, G., Dalia, C., Tafuri, D., Monda, V., Palmieri, F., Dato, A., Russo, A., De Blasio, S., Messina, A., De Luca, V., Chieffi, S., & Monda, M. (2014). Orexin-A controls sympathetic activity and eating behavior. Frontiers in psychology, 5, 997. https://doi.org/10.3389/fpsyg.2014.00997
92.Michalickova, D., Kotur-Stevuljevic, J., Miljkovic, M., Dikic, N., Kostic-Vucicevic, M., Andjelkovic, M., Koricanac, V., & Djordjevic, B. (2018). Effects of Probiotic Supplementation on Selected Parameters of Blood Prooxidant-Antioxidant Balance in Elite Athletes: A Double-Blind Randomized Placebo-Controlled Study. Journal of human kinetics, 64, 111–122. https://doi.org/10.1515/hukin-2017-0203
93.Mielgo-Ayuso, J., Marques-Jiménez, D., Refoyo, I., Del Coso, J., León-Guereño, P., & Calleja-González, J. (2019). Effect of Caffeine Supplementation on Sports Performance Based on Differences Between Sexes: A Systematic Review. Nutrients, 11(10), 2313. https://doi.org/10.3390/nu11102313
94.Mika, A., Van Treuren, W., González, A., Herrera, J. J., Knight, R., & Fleshner, M. (2015). Exercise is More Effective at Altering Gut Microbial Composition and Producing Stable Changes in Lean Mass in Juvenile versus Adult Male F344 Rats. PloS one, 10(5), e0125889. https://doi.org/10.1371/journal.pone.0125889
95.Mills, S., Stanton, C., Lane, J. A., Smith, G. J., & Ross, R. P. (2019). Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 11(4), 923. https://doi.org/10.3390/nu11040923
96.Miranda-Comas, G., Petering, R. C., Zaman, N., & Chang, R. (2022). Implications of the Gut Microbiome in Sports. Sports health, 14(6), 894–898. https://doi.org/10.1177/19417381211060006
97.Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of agricultural and food chemistry, 63(14), 3615–3626. https://doi.org/10.1021/jf506326t
98.Mohr, A. E., Jäger, R., Carpenter, K. C., Kerksick, C. M., Purpura, M., Townsend, J. R., West, N. P., Black, K., Gleeson, M., Pyne, D. B., Wells, S. D., Arent, S. M., Kreider, R. B., Campbell, B. I., Bannock, L., Scheiman, J., Wissent, C. J., Pane, M., Kalman, D. S., Pugh, J. N., … Antonio, J. (2020). The athletic gut microbiota. Journal of the International Society of Sports Nutrition, 17(1), 24. https://doi.org/10.1186/s12970-020-00353-w
99.Monda, V., Villano, I., Messina, A., Valenzano, A., Esposito, T., Moscatelli, F., Viggiano, A., Cibelli, G., Chieffi, S., Monda, M., & Messina, G. (2017). Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxidative medicine and cellular longevity, 2017, 3831972. https://doi.org/10.1155/2017/3831972
100.Moreno-Pérez, D., Bressa, C., Bailén, M., Hamed-Bousdar, S., Naclerio, F., Carmona, M., Pérez, M., González-Soltero, R., Montalvo-Lominchar, M. G., Carabaña, C., & Larrosa, M. (2018). Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study. Nutrients, 10(3), 337. https://doi.org/10.3390/nu10030337
101.Nicholson, J. K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., & Pettersson, S. (2012). Host-gut microbiota metabolic interactions. Science (New York, N.Y.), 336(6086), 1262–1267. https://doi.org/10.1126/science.1223813
102.O'Brien, K. V., Stewart, L. K., Forney, L. A., Aryana, K. J., Prinyawiwatkul, W., & Boeneke, C. A. (2015). The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training. Journal of dairy science, 98(11), 7446–7449. https://doi.org/10.3168/jds.2015-9392
103.O'Sullivan, O., Cronin, O., Clarke, S. F., Murphy, E. F., Molloy, M. G., Shanahan, F., & Cotter, P. D. (2015). Exercise and the microbiota. Gut microbes, 6(2), 131–136. https://doi.org/10.1080/19490976.2015.1011875
104.Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS biology, 5(7), e177. https://doi.org/10.1371/journal.pbio.0050177
105.Paulsen, J. A., Ptacek, T. S., Carter, S. J., Liu, N., Kumar, R., Hyndman, L., Lefkowitz, E. J., Morrow, C. D., & Rogers, L. Q. (2017). Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer, 25(5), 1563–1570. https://doi.org/10.1007/s00520-016-3568-5
106.Peppler, W. T., Anderson, Z. G., Sutton, C. D., Rector, R. S., & Wright, D. C. (2016). Voluntary wheel running attenuates lipopolysaccharide-induced liver inflammation in mice. American journal of physiology. Regulatory, integrative and comparative physiology, 310(10), R934–R942. https://doi.org/10.1152/ajpregu.00497.2015
107.Perna, S., Alalwan, T. A., Alaali, Z., Alnashaba, T., Gasparri, C., Infantino, V., Hammad, L., Riva, A., Petrangolini, G., Allegrini, P., & Rondanelli, M. (2019). The Role of Glutamine in the Complex Interaction between Gut Microbiota and Health: A Narrative Review. International journal of molecular sciences, 20(20), 5232. https://doi.org/10.3390/ijms20205232
108.Petersen, L. M., Bautista, E. J., Nguyen, H., Hanson, B. M., Chen, L., Lek, S. H., Sodergren, E., & Weinstock, G. M. (2017). Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 5(1), 98. https://doi.org/10.1186/s40168-017-0320-4
109.Philp, A., Hargreaves, M., Baar, K. More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol - Endocrinol Metab. 2012;302(11).
110.Poretsky, R., Rodriguez-R, L. M., Luo, C., Tsementzi, D., & Konstantinidis, K. T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PloS one, 9(4), e93827. https://doi.org/10.1371/journal.pone.0093827
111.Przewłócka, K., Folwarski, M., Kaźmierczak-Siedlecka, K., Skonieczna-Żydecka, K., & Kaczor, J. J. (2020). Gut-Muscle AxisExists and May Affect Skeletal Muscle Adaptation to Training. Nutrients, 12(5), 1451. https://doi.org/10.3390/nu12051451
112.Pugh, J. N., Sparks, A. S., Doran, D. A., Fleming, S. C., Langan-Evans, C., Kirk, B., Fearn, R., Morton, J. P., & Close, G. L. (2019). Four weeks of probiotic supplementation reduces GI symptoms during a marathon race. European journal of applied physiology, 119(7), 1491–1501. https://doi.org/10.1007/s00421-019-04136-3
113.Qiao, Y., Sun, J., Ding, Y., Le, G., & Shi, Y. (2013). Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Applied microbiology and biotechnology, 97(4), 1689–1697. https://doi.org/10.1007/s00253-012-4323-6
114.Queipo-Ortuño, M. I., Seoane, L. M., Murri, M., Pardo, M., Gomez-Zumaquero, J. M., Cardona, F., Casanueva, F., & Tinahones, F. J. (2013). Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PloS one, 8(5), e65465. https://doi.org/10.1371/journal.pone.0065465
115.Quigley E. M. (2009). Do Patients with Functional Gastrointestinal Disorders have an Altered Gut Flora?. Therapeutic advances in gastroenterology, 2(4), 23–30. https://doi.org/10.1177/1756283X09335636
116.Rajilić-Stojanović, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S., & de Vos, W. M. (2011). Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology, 141(5), 1792–1801. https://doi.org/10.1053/j.gastro.2011.07.043
117.Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118(2), 229–241. https://doi.org/10.1016/j.cell.2004.07.002
118.Rao, A. V., Bested, A. C., Beaulne, T. M., Katzman, M. A., Iorio, C., Berardi, J. M., & Logan, A. C. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut pathogens, 1(1), 6. https://doi.org/10.1186/1757-4749-1-6
119.Ren, M., Zhang, S. H., Zeng, X. F., Liu, H., & Qiao, S. Y. (2015). Branched-chain Amino Acids are Beneficial to Maintain Growth Performance and Intestinal Immune-related Function in Weaned Piglets Fed Protein Restricted Diet. Asian-Australasian journal of animal sciences, 28(12), 1742–1750. https://doi.org/10.5713/ajas.14.0131
120.Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L. R., Scaldaferri, F., Pulcini, G., Miggiano, G. A. D., Gasbarrini, A., & Mele, M. C. (2019). Food Components and Dietary Habits: Keys for a Healthy Gut Microbiota Composition. Nutrients, 11(10), 2393. https://doi.org/10.3390/nu11102393
121.Rodriguez-Miguelez, P., Fernandez-Gonzalo, R., Almar, M., Mejías, Y., Rivas, A., de Paz, J. A., Cuevas, M. J., & González-Gallego, J. (2014). Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordrecht, Netherlands), 36(6), 9734. https://doi.org/10.1007/s11357-014-9734-0
122.Rowland, I., Capurso, L., Collins, K., Cummings, J., Delzenne, N., Goulet, O., Guarner, F., Marteau, P., & Meier, R. (2010). Current level of consensus on probiotic science--report of an expert meeting--London, 23 November 2009. Gut microbes, 1(6), 436–439. https://doi.org/10.4161/gmic.1.6.13610
123.Ruiz-Iglesias, P., Estruel-Amades, S., Massot-Cladera, M., Franch, À., Pérez-Cano, F. J., & Castell, M. (2022). Rat Mucosal Immunity following an Intensive Chronic Training and an Exhausting Exercise: Effect of Hesperidin Supplementation. Nutrients, 15(1), 133. https://doi.org/10.3390/nu15010133
124.Rycroft, A. N., & Garside, L. H. (2000). Actinobacillus species and their role in animal disease. Veterinary journal (London, England : 1997), 159(1), 18–36. https://doi.org/10.1053/tvjl.1999.0403
125.Samuel, B. S., Shaito, A., Motoike, T., Rey, F. E., Backhed, F., Manchester, J. K., Hammer, R. E., Williams, S. C., Crowley, J., Yanagisawa, M., & Gordon, J. I. (2008). Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16767–16772. https://doi.org/10.1073/pnas.0808567105
126.Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M., & Kostic, A. D. (2019). Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nature medicine, 25(7), 1104–1109. https://doi.org/10.1038/s41591-019-0485-4
127.Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics--approaching a definition. The American journal of clinical nutrition, 73(2 Suppl), 361S–364S. https://doi.org/10.1093/ajcn/73.2.361s
128.Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., & Kimura, I. (2019). Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Scientific reports, 9(1), 16574. https://doi.org/10.1038/s41598-019-53242-x
129.Soares, A. D. N., Wanner, S. P., Morais, E. S. S., Hudson, A. S. R., Martins, F. S., & Cardoso, V. N. (2019). Supplementation with Saccharomyces boulardii Increases the Maximal Oxygen Consumption and Maximal Aerobic Speed Attained by Rats Subjected to an Incremental-Speed Exercise. Nutrients, 11(10), 2352. https://doi.org/10.3390/nu11102352
130.Spriet L. L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports medicine (Auckland, N.Z.), 44 Suppl 1(Suppl 1), S87–S96. https://doi.org/10.1007/s40279-014-0154-1
131.Spyropoulos, B. G., Misiakos, E. P., Fotiadis, C., & Stoidis, C. N. (2011). Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation-induced enteritis and colitis. Digestive diseases and sciences, 56(2), 285–294. https://doi.org/10.1007/s10620-010-1307-1
132.Stilling, R. M., Ryan, F. J., Hoban, A. E., Shanahan, F., Clarke, G., Claesson, M. J., Dinan, T. G., & Cryan, J. F. (2015). Microbes & neurodevelopment--Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, behavior, and immunity, 50, 209–220. https://doi.org/10.1016/j.bbi.2015.07.009
133.Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P., & Lochs, H. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. Journal of clinical microbiology, 43(7), 3380–3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005
134.Tannock G. W. (2007). What immunologists should know about bacterial communities of the human bowel. Seminars in immunology, 19(2), 94–105. https://doi.org/10.1016/j.smim.2006.09.001
135.Thomas, D. T., Erdman, K. A., & Burke, L. M. (2016). Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. Journal of the Academy of Nutrition and Dietetics, 116(3), 501–528. https://doi.org/10.1016/j.jand.2015.12.006
136.Trovato, F. M., Martines, G. F., Brischetto, D., Catalano, D., Musumeci, G., & Trovato, G. M. (2016). Fatty liver disease and lifestyle in youngsters: diet, food intake frequency, exercise, sleep shortage and fashion. Liver international : official journal of the International Association for the Study of the Liver, 36(3), 427–433. https://doi.org/10.1111/liv.12957
137.Tzounis, X., Rodriguez-Mateos, A., Vulevic, J., Gibson, G. R., Kwik-Uribe, C., & Spencer, J. P. (2011). Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American journal of clinical nutrition, 93(1), 62–72. https://doi.org/10.3945/ajcn.110.000075
138.Ünsal, C., Ünsal, H., Ekici, M., Koç Yildirim, E., Üner, A. G., Yildiz, M., Güleş, Ö., Ekren Aşici, G. S., Boyacioğlu, M., Balkaya, M., & Belge, F. (2018). The effects of exhaustive swimming and probiotic administration in trained rats: Oxidative balance of selected organs, colon morphology, and contractility. Physiology international, 105(4), 309–324. https://doi.org/10.1556/2060.105.2018.4.25
139.van Hall G. (2010). Lactate kinetics in human tissues at rest and during exercise. Acta physiologica (Oxford, England), 199(4), 499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x
140.Veldurthy, V., Wei, R., Oz, L., Dhawan, P., Jeon, Y. H., & Christakos, S. (2016). Vitamin D, calcium homeostasis and aging. Bone research, 4, 16041. https://doi.org/10.1038/boneres.2016.41
141.Viloria, M., Lara-Padilla, E., Campos-Rodríguez, R., Jarillo-Luna, A., Reyna-Garfias, H., López-Sánchez, P., Rivera-Aguilar, V., Salas-Casas, A., Berral de la Rosa, F. J., & García-Latorre, E. (2011). Effect of moderate exercise on IgA levels and lymphocyte count in mouse intestine. Immunological investigations, 40(6), 640–656. https://doi.org/10.3109/08820139.2011.575425
142.Walsh, N. P., Gleeson, M., Shephard, R. J., Gleeson, M., Woods, J. A., Bishop, N. C., Fleshner, M., Green, C., Pedersen, B. K., Hoffman-Goetz, L., Rogers, C. J., Northoff, H., Abbasi, A., & Simon, P. (2011). Position statement. Part one: Immune function and exercise. Exercise immunology review, 17, 6–63.
143.Welly, R. J., Liu, T. W., Zidon, T. M., Rowles, J. L., 3rd, Park, Y. M., Smith, T. N., Swanson, K. S., Padilla, J., & Vieira-Potter, V. J. (2016). Comparison of Diet versus Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Medicine and science in sports and exercise, 48(9), 1688–1698. https://doi.org/10.1249/MSS.0000000000000964
144.Wen, L., Ley, R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong, F. S., Szot, G. L., Bluestone, J. A., Gordon, J. I., & Chervonsky, A. V. (2008). Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455(7216), 1109–1113. https://doi.org/10.1038/nature07336
145.West, N. P., Pyne, D. B., Cripps, A. W., Hopkins, W. G., Eskesen, D. C., Jairath, A., Christophersen, C. T., Conlon, M. A., & Fricker, P. A. (2011). Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutrition journal, 10, 30. https://doi.org/10.1186/1475-2891-10-30
146.Williams N. T. (2010). Probiotics. American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists, 67(6), 449–458. https://doi.org/10.2146/ajhp090168
147.Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.), 334(6052), 105–108. https://doi.org/10.1126/science.1208344
148.Yang Z, Huang S, Zou D, Dong D, He X, Liu N, et al. Metabolic shifts and structural changes in the gut microbiota upon branched-chain amino acid supplementation in middle-aged mice. Amino Acids. 2016;48(12):2731–45.
149.Yang, Y., Shi, Y., Wiklund, P., Tan, X., Wu, N., Zhang, X., Tikkanen, O., Zhang, C., Munukka, E., & Cheng, S. (2017). The Association between Cardiorespiratory Fitness and Gut Microbiota Composition in Premenopausal Women. Nutrients, 9(8), 792. https://doi.org/10.3390/nu9080792
150.Zhao, X., Zhang, Z., Hu, B., Huang, W., Yuan, C., & Zou, L. (2018). Response of Gut Microbiota to Metabolite Changes Induced by Endurance Exercise. Frontiers in microbiology, 9, 765. https://doi.org/10.3389/fmicb.2018.00765
151.Zhou, H., Yu, B., Gao, J., Htoo, J. K., & Chen, D. (2018). Regulation of intestinal health by branched-chain amino acids. Animal science journal = Nihon chikusan Gakkaiho, 89(1), 3–11. https://doi.org/10.1111/asj.12937
152.Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. S., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature genetics, 50(6), 790–795. https://doi.org/10.1038/s41588-018-0135-7