
122
ISSN: 1896-382X | www.wnus.edu.pl/pl/edu/

DOI: 10.18276/epu.2016.122-35 | strony: 371-379

AGNIESZKA WIELGUS

METAHEURISTIC ALGORITHMS FOR SCHEDULING ON PARALLEL MACHINES
WITH VARIABLE SETUP TIMES

Abstract

In order to meet growing demands of the market modern manufacturing and ser-
vice environments must offer an increasingly broad range of services or products as
well as ensure their required amount and short lead times. It can be done by the applica-
tion of universal machines or workers which are able to perform different tasks. On the
other hand, human activity environments are often affected by learning. Therefore, in
this paper, we analyse related problems, which can be expressed as the makespan mini-
mization scheduling problem on identical parallel machines with variable setup times
affected by learning of workers. To provide an efficient schedule, we propose metaheu-
ristic algorithms. Their potential applicability is verified numerically.
Keywords: scheduling, parallel machines, setup times, learning.

Introduction

Modern manufacturing and service environments to meet growing demands of
the market must offer an increasingly broad range of services or products, ensure
their required amount and short lead times. However, this causes significant in-
crease in the complexity of the management process (Pinedo, 2012). It leads to
a reduction in the efficiency of available resources utilization (workers, machines,
etc.). Therefore, the increase of manufacturing/service organization competitiveness
is also associated with the use of efficient methods supporting the management, that

Metaheuristic algorithms for scheduling on parallel machines… 370

will be able to meet these changes. This is especially evident in project management
and production, where a plan or a schedule is determined such that it optimizes
some given criterion (Allahverdi, 2015; Biskup, 2008; Pinedo, 2012).

Often there is a need to provide multiple products or services on common
resources such as universal CNC machines or workers being able to perform differ-
ent jobs. Thus, such environments require setups related with preparations of uni-
versal machines to process different products (e.g., tool changes, programming,
etc.) or rearrangements of working places.

During the analysis of models of scheduling problems, it can be observed that
they simultaneously evolve to better describe the phenomena existing in real-life. In
recent years some additional factors affecting setup times/costs have been taken into
account, such as learning of a human worker (Kuo, Hsu, and Yang, 2011). Namely,
typical human activity environments as well as automatized manufacturing require
human support for machines, which is needed during activities such as operating,
controlling, setup, cleaning, maintaining, failure removal, etc. Usually, humans
increase their efficiency with the number of repetitions of the same or similar activi-
ties (Biskup, 2008). It can result in decreasing of processing times of setups (Allah-
verdi, 2015). This phenomena of learning can be illustrated by Figure 1.

Number of units

Pr
oc

es
si

ng
 ti

m
e

Fig. 1. Setup processing times depending on the number of performed setups (units)

Source: Following (Biskup 2008).

Therefore, in this paper, we will analyse such problems that can be expressed
as scheduling on parallel machines (e.g., human workers or CNC machines) with
setup times of machines under minimization of the maximum completion time
(makespan). Additionally, we will take into consideration that setup times can be
affected by learning of human workers. To solve the considered problem, we will
propose metaheuristic algorithms that are based on a simulated annlealing tech-
nique.

371

The remainder of this paper is organized as follows. The problem is formu-
lated in the next section, whereas its solution algorithms are given subsequently,
followed by their numerical analysis. The last section concludes the paper.

1. Problem formulation

There is given a set J = {1,... ,n} of n jobs (tasks) to be completed by a set
M = {M1,.., Mm} of m identical machines (e.g., workers or CNC machines). It is
assumed that jobs and machines are available at time zero. We assume that job
preemption is not allowed and no precedence constraints between jobs exist. More-
over, each job is characterized by is processing time pj.

Following practical cases, jobs can belong to different families. It means that
if they are from the same family, they require the same sets of production facilities
(e.g., tools, working place arrangement, etc.). However, a rearranging (setup) of
a machine (preparation of tools, working place) is needed whenever there occurs
a switching between jobs belonging to different families, which on the other hand is
related with additional time. Let F = {If : f = 1, ..., b} be a set of b families. Each job
j J belongs to only one family If F. Namely, if job j belongs to family If, then it
is denoted by gj = f. Thereby, if job k is processed just before job j on the same ma-
chine Mi and k belongs to a different family than j, i.e., gk gj, then a setup of ma-
chine Mi is required. In other words, a preparation of a machine is needed to start
job j, where gj = f. It is related with a setup time sf related with family If. If job j is
performed as the first job on machine Mi, then a setup related with its family is
needed. In this paper, we consider setups that are sequence independent, thereby
a setup of a family does not depend on the previously performed family (Allah-
verdi, 2015).

In many real-life cases, setup times are not constant values, but they can vary
due to the learning effect. It means that preparing a machine (or working place) to
process jobs belonging to the same family is less time consuming if such prepara-
tions were done before. Following (Biskup, 2008), the setup time of family sf (vi) is
described by a non-decreasing function dependent on the number vi of setups re-
lated with family If performed on machine (by worker) Mi (or by workers related
with this machine) as follows:

,)(ifif vsvs (1)

where sf is a normal setup time related with family If, if the setup is performed for
the first time. The parameter is a learning index (a slope of the learning curve)
that depends on the learning rate LR (= log2LR), which is defined as rate of each
redoubling the output LR = sf (2vi)/sf (vi). For the popular 80% hypothesis the learn-
ing index is calculated as follows = log2LR = -0.322 (Biskup, 2008).

Metaheuristic algorithms for scheduling on parallel machines… 372

Let us now formulate the considered problem. At first, the schedule of jobs
can be unambiguously defined by their permutations (sequences)

= { 1, ..., i, ..., m}, where i denotes the permutation of jobs on machine Mi and
i(k) is the index of the kth job in permutation i for i = 1,...,m. Moreover, ni is the

number of jobs assigned to machine (worker) Mi. On this basis, the completion time
of job i(k), i.e., scheduled as the kth in permutation on machine Mi, can be de-
fined as follows:

,)(),1()(
)(

)1(
)(

)(ikkk
i

k
i

k vspCC
iiiii

(2)

where 0)(
)0(

i
i

C (for i = 1, ..., m) and
otherwise

ggs
s kkk

kk
iii

ii ,0

,)1()()(
)(),1(is

equal to the setup time)(ki
s of job i (k) if the previous job i (k-1) belongs to

a different family, otherwise 0)(),1(kks if both jobs belong to the same family.

Note that fk ss
i)(if fg ki)(and)1()1(,0 ii

ss for i = 1, ..., m. Recall that

the parameter vi is the number of previous setups on machine Mi.
The objective is to find such a

completion time among all machines (makespan):
}.{max)()(

)(,...,1max
i

nmi i
CC (3)

Thereby the problem can be formally defined as
)},({minarg max

* C (4)

For convenience the problem will be used according to the standard three field
notation scheme as follows Pm|SLE|Cmax (i.e., Pm – parallel identical machines,
SLE – Setup Learning Effect, Cmax – the maximum completion time criterion,
called the makespan).

2. Algorithms

The considered problem Pm|SLE|Cmax is at least NP-hard, since its classical
version without setup times is at NP-hard (Pinedo, 2012). To solve it, we will pro-
pose some metaheuristic algorithms based on simulated annealing (Kirkpatrick,
Gelatt, and Vecchi, 1983; Rudek, 2013).

In both algorithms, we use a representation of a solution, where a set of indi-
ces is used {{1,..., n}, {n+1, ..., n+m-1}} such that indices {1,...,n} refer to jobs,
whereas {n+1,..., n+m-1} are markers to separate jobs on particular machines. It is
illustrated in the following example.

373

Example 1
Given n = 6 jobs and m = 3 machines. On this basis, the following set is con-

structed {{1, ...,6},{7, 8}}, where {1,...,6} are indices of jobs and {7,8} are used to
separate them on particular machines. Therefore, a representation of a schedule

= (1, 2, 3, 7, 4, 8, 5, 6), which is equivalent to (1, 2, 3, 8, 4, 7, 5, 6), refers to the
1 = (1, 2, 2 = 3 = (5, 6).

The primary simulated annealing (SA) algorithm (e.g., Rudek, 2013) starts
init new is

old. It is done by the interchanging of two
randomly chosen jobs. This new solution is accepted with the probability

,)()(exp,1max maxmax

T
CC oldnew (5)

where T=T/() is a temperature parameter, which decreases in each iterations.
The parameter is calculated as follows:

,
0

0

N

N

TNT
TT

(6)

where T0 is an initial value of T, and TN is its final value, whereas N is the assumed
number of iterations of SA. The value of TN is close to zero and the initial value of
T0 is calculated according to Algorithm 1.

Algorithm 1 Calculate initial value T0
Cmin =
Cmax = 0
for iter = 1 to n*n
{

i = random value from 1...n
j = random value from 1...n
swap jobs in positions i and j in
Calculate criterion value C for
if C < Cmin then Cmin = C
if C > Cmax then Cmax = C

}
return –(Cmax – Cmin)/log(0.9)

new
*, i.e.,

)()(max
*

max newCC * = new.

Metaheuristic algorithms for scheduling on parallel machines… 374

In this paper, we also extend the classical SA by a variable neighbourhood
search (denoted by SAV), where swap and insert moves are applied. Its formal
description is given as follows.

Algorithm 2 SAV

calculate according to (6)
T = T0 calculate according to Algorithm 1

old new init determine according to a list scheduling algorithm
while(stop condition not hold)
{

for iter = 1 to IterMax
{

i = random value 1...n
j = random value 1...n
obtain new by swaping jobs in positions i and j in old

assign old new with probability defined by (5)
if C(new)<C() then = new

obtain new by insertion of job from position i to j in old

assign old new with probability defined by (5)
if C(new)<C() then = new

}
T=T/()

}
return schedule

Initial solution init of SA and SAV is provided by a list scheduling algorithm
(LSA) that on the basis of a list (with randomly sequenced jobs) assigns jobs to the
first available machine.

3. Numerical analysis

In this section, we will analyse numerically the algorithms described in the
previous section.1 During simulations, the following problem sizes were considered
n {10, 100, 500} and m {2, 5, 10}.

1 All of them were coded in C++ and simulations were run on PC,
CPU Intel® Core™ i7-2600K 3.40 GHz and 8 GB RAM.

375

Table 1

Mean and maximum relative errors of the analysed algorithms (running times 500ms)

n m b sj
LSA SA SAV

mean max mean max mean max

10 2

[1,2]
[1, 5] 17.87 29.60 0.00 0.00 0.00 0.00
[1,10] 25.63 48.01 0.00 0.00 0.00 0.00
[1,20] 37.35 99.15 0.00 0.00 0.00 0.00

[1,5]
[1, 5] 12.57 28.41 0.00 0.00 0.00 0.00
[1,10] 28.46 52.73 0.00 0.00 0.00 0.00
[1,20] 34.69 54.93 0.00 0.00 0.00 0.00

100

2

[1,10]
[1, 5] 16.69 21.86 0.47 2.32 0.10 0.82
[1,10] 29.12 36.67 1.04 3.30 0.16 1.45
[1,20] 58.97 78.21 1.13 3.37 1.38 6.39

[1,50]
[1, 5] 11.84 16.15 0.19 0.77 0.21 0.83
[1,10] 21.30 30.69 0.24 1.91 0.13 0.67
[1,20] 37.53 43.50 0.44 1.57 0.24 1.10

5

[1,10]
[1, 5] 20.48 24.90 0.19 0.84 0.45 2.54
[1,10] 34.38 51.09 0.23 1.03 0.68 2.37
[1,20] 71.04 90.69 1.55 7.30 1.38 3.94

[1,50]
[1, 5] 14.26 20.22 0.34 2.59 0.32 1.12
[1,10] 28.59 35.64 0.75 2.04 0.54 1.89
[1,20] 45.66 62.76 0.76 2.65 0.37 2.13

10

[1,10]
[1, 5] 21.97 28.58 0.71 2.70 0.53 2.24
[1,10] 35.62 54.20 0.51 1.74 0.30 1.68
[1,20] 67.40 101.41 0.98 4.76 0.60 4.00

[1,50]
[1, 5] 17.22 30.23 0.33 1.34 0.30 1.18
[1,10] 27.87 34.18 0.19 1.64 1.27 2.73
[1,20] 51.88 68.37 2.25 4.59 0.30 1.66

500

2

[1,50]
[1, 5] 13.10 16.49 0.78 1.55 0.00 0.02
[1,10] 24.49 30.22 1.25 2.78 0.11 0.57
[1,20] 44.07 55.66 0.75 2.84 0.30 1.57

[1,250]
[1, 5] 9.23 10.80 0.23 0.84 0.05 0.29
[1,10] 15.33 18.33 0.56 1.41 0.11 0.65
[1,20] 28.35 34.50 0.99 3.08 0.21 1.49

5

[1,50]
[1, 5] 14.58 18.89 0.07 0.56 0.82 2.68
[1,10] 26.08 33.40 0.10 0.47 0.63 1.89
[1,20] 43.65 54.36 0.27 1.80 1.55 3.94

[1,250]
[1, 5] 9.55 12.49 0.07 0.41 0.61 1.53
[1,10] 16.63 22.07 0.32 1.49 0.54 1.60
[1,20] 32.01 38.18 0.22 1.15 1.31 5.23

10

[1,50]
[1, 5] 16.83 21.28 0.52 4.02 0.47 1.22
[1,10] 25.13 37.19 0.44 2.80 1.10 5.47
[1,20] 49.15 59.82 1.56 5.10 0.88 4.14

[1,250]
[1, 5] 10.64 14.27 0.16 0.46 0.46 1.76
[1,10] 18.68 27.96 0.56 2.45 0.67 2.82
[1,20] 33.99 43.66 0.41 2.66 1.15 2.75

Source: own work.

Metaheuristic algorithms for scheduling on parallel machines… 376

For each pair of n and m, 100 different random instances were generated from
the uniform distribution over the integers in the following ranges of parameters: the
processing times pj {1,..., 10}; the setup times sj {1,...,5}, {1,...,10}, {1,..., 20};
the number of families b {0.1n, 0.5n}; the learning index = -0.322 that refers to
a popular learning rate 80% (Biskup, 2008). The parameters of simulated annealing
(SA and SAV) are chosen empirically as follows: IterMax = 10, TN = 0.0001,
N = 280000n-0.7 and the stop condition is set to be 500 ms.

Similarly as in (Rudek, 2013), the algorithms are evaluated according to the
relative error calculated as follows:

%,100
)(

)()()(*
max

*
maxmax

IC
ICICI

A
A (7)

where)(max IC A is the criterion value obtained by algorithm A {SA, SAV, TS} for

instance I and)(*
max IC is the optimal (n = 10) or best found criterion value for

instance I. The mean and maximum relative errors of the algorithms are given in
Table 1.

It can be seen in Table 1 that SAV provided similar results as SA. Moreover,
the algorithms SA and SAV provided optimal solutions for all instances n = 10, and
they are significantly better than LSA. It is worth mentioning that we have imple-
mented and analysed different tabu search algorithms (based on insert and swap
moves). However, they were overwhelmed by SAV and duo to page limit their
descriptions as well as numerical analysis were omitted in this paper.

Conclusions

In this paper, we expressed some problems as the makespan minimization
scheduling problem on identical parallel machines with non-increasing setup times
dependent on the number of previous setups. We also proposed metaheuristic algo-
rithms based on simulated annealing. The numerical analysis showed that the algo-
rithms are efficient to solve the problem.

Our future work will focus on the analysis of parallel scheduling problems
under other objectives as well as the construction of other metaheuristic algorithms.

Acknowledgement

The research presented in this paper has been partially supported by the Polish
National Science Centre under grant no. DEC-2012/05/D/HS4/01129 (algorithms)
and by the Polish Ministry of Science and Higher Education under Iuventus Plus
Programme (No. IP2014 040673) (models/analysis).

377

Literature

1. Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with
setup times/costs. European Journal of Operational Research, 246, pp. 345–378.

2. Biskup, D. (2008). A state-of-the-art review on scheduling with learning effects.
European Journal of Operational Research, 188, pp. 315–329.

3. Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P. (1983). Optimization by simu-
lated annealing. Science, 220, pp. 671–680.

4. Kuo, W.-H. and Hsu, C.-J. and Yang, D.-L. (2011). Some unrelated parallel ma-
chine scheduling problems with past-sequence-dependent setup time and learning
effects. Computers & Industrial Engineering, 61, pp. 179–183.

5. Pinedo, M. (2012). Scheduling: Theory, Algorithms and Systems (4rd ed.). New
York: Springer, 2012.

6. Rudek, R. (2013). On single processor scheduling problems with learning depend-
ent on the number of processed jobs. Applied Mathematical Modelling, 37, pp.
1523–1536.

ALGORYTMY METAHEURYSTYCZNE DLA PROBLEMU

Streszczenie

wymaganiom rynkowym,

rugiej strony, istnienie czynnika ludzkiego powoduje
jest

ania oraz przy zmiennych czasach
k-

tywnego harmonogramu zaproponowano algorytmy metaheurystyczne. Zakres ich za-

kluczowe: harmonogramowanie, , przezbrojenie, uczenie.

