Acta Biologica

Wcześniej: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Acta Biologica

ISSN: 2450-8330     eISSN: 2353-3013    OAI    DOI: 10.18276/ab.2020.27-12
CC BY-SA   Open Access   DOAJ

Lista wydań / No. 27
Conservation genetics – science in the service of nature
(Genetyka konserwatorska – nauka w służbie przyrody)

Autorzy: Cansel Taşkın ORCID
Department of Biology, Ankara University, 06930 Ankara, Turkey

Jakub Skorupski
Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin; Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 70-374 Szczecin, Poland
Słowa kluczowe: depresja wsobna ekogenomika genomika jednostki zarządzania obciążenie genetyczne ryzyko wyginięcia wir wymierania
Data publikacji całości:2020
Liczba stron:11 (131-141)
Cited-by (Crossref) ?:

Abstrakt

Genetyka konserwatorska jest subdyscypliną biologii konserwatorskiej, która zajmuje się ryzykiem wyginięcia gatunków i wieloma innymi problemami ochrony przyrody, przy użyciu narzędzi i technik genetycznych. Genetyka konserwatorska jest bardzo dobrym przykładem praktycznego wykorzystania osiągnięć nauki w ochronie przyrody. Choć jej nazwa wydaje się samodefiniująca, to właściwy jej obszar zainteresowań, aparat pojęciowy i warsztat metodycz-ny nie są powszechnie znane i rozpoznawalne. Celem artykułu przeglądowego jest wyjaśnienie wszelkich niejasności i niespójności w tym zakresie. Artykuł wyjaśnia czym jest genetyka konserwatorska, jakie problemy badawcze i praktyczne podejmuje oraz w jaki sposób mogą być one rozwiązane.
Pobierz plik

Plik artykułu

Bibliografia

1.Allendorf, F.W., Hohenlohe, P.A., Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11, 697–709.
2.Allendorf, F.W., Luikart, G. (2007). Conservation and the Genetics of Population. London: Blackwell Publishing.
3.Amos, W., Balmford, A. (2001). When does conservation genetics matter? Heredity, 87, 257–265.
4.Araújo, M.B. (2002). Biodiversity hotspots and zones of ecological transition. Conserv. Biol., 16 (6), 1662–
5.1663.
6.Avise, J.C. (2008). The history, purview, and future of conservation genetics. In: S.P. Carroll, C.W. Fox
7.(eds.), Conservation biology: evolution in action (pp. 5–15). Oxford: Oxford University Press.
8.Avise, J.C. (2010). Perspective: Conservation enters the genomic era. Conservation Genetics, 11, 665–669.
9.Bissett, A. et al. (2016). Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. GigaScience, 5, 1–11.
10.Casacci, L.P., Barbero, F., Balletto, E. (2014). The “Evolutionarily Significant Unit” concept and its applicability in biological conservation. Italian Journal of Zoology, 81 (2), 182–193.
11.Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology, 63, 215–244.
12.Darwin, C. (1896). The Variation of Animals and Plants under Domestication. Vol. II. New York: D. Apple-
13.ton & Co.
14.Efremov, V.V. (2007). Population as a conservation and management unit in vertebrate animals. Zh Obshch
15.Biol., 68 (3), 205–220.
16.Fabbri, E., Miquel, C., Lucchini, V., Santini, A., Caniglia, R., Duchamp, C., Weber, J.-M., Lequette, B.,
17.Marucco, F., Boitani, L., Fumagalli, L., Taberlet, P., Randi, E. (2007). From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Molecular
18.Ecology, 16, 1661–1671.
19.Fagan, W.F., Holmes, E.E. (2006). Quantifying the extinction vortex. Ecology Letters, 9, 51–60.
20.Feder, M.E., Mitchell-Olds, T.M. (2003). Evolutionary and ecological functional genomics. Nat. Rev. Gen-
21.et., 4, 651–657.
22.Frankel, O.H., Soulé, M.E. (1981). Conservation and evolution. Cambridge: Cambridge University Press.
23.Frankel, O.H. (1974). Genetic conservation: Our evolutionary responsibility. Genetics, 78, 53–65. Frankham, R., Ballou, J.D., Briscoe, D.A., McInnes, K.H. (2004). A Primer of Conservation
24.Genetics.
25.Cambridge: Cambridge University Press.
26.Frankham, R., Ballou, J.D., Briscoe, D.A. (2004). Introduction to Conservation Genetics. Cambridge:
27.Cambridge University Press.
28.Frankham, R. (2003). Genetics and conservation biology. Comptes Rendus Biologies, 326, 22–29.
29.Fraser, D.J., Bernatchez, L. (2001). Adaptive evolutionary conservation: Towards a unified concept for defining conservation units. Molecular Ecology, 10, 2741–2752.
30.Funk, W.C., McKay, J.C., Hohenlohe, P.A., Allendorf, F.W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution, 27, 489–495.
31.Garner, A., Rachlow, J.L., Hicks, J.F. (2005). Patterns of Genetic Diversity and Its Loss in Mammalian Populations. Conservation Biology, 19, 1215–1221.
32.Gaston, K.J. (2010). Biodiversity. In: N.S. Sodhi, P.R. Ehrlich (eds.), Conservation Biology for All (pp. 27–44). Oxford: Oxford University Press.
33.Gilligan, D.M., Woodworth, L.M., Montgomery, M.E., Briscoe, D.A., Frankham, R. (1997). Is Mutation Accumulation a Threat to the Survival of Endangered Populations? Conservation Biology, 11 (5),
34.1235–1241.
35.Hedrick, P., Miller, P. (1992). Conservation Genetics: Techniques and Fundamentals. Ecological Applications, 2 (1), 30–46.
36.Higgins, K., Lynch, M. (2001). Metapopulation extinction caused by mutation accumulation. Proc. Nat. Acad. Sci. U. S. A., 98, 2928–2933.
37.Keller, L.F, Waller, D.M. (2002). Inbreeding effects in wild populations. Trends in Ecology & Evolution, 17, 230–241.
38.Lacy, R.C., Lindenmayer, D.B. (1995). A simulation study of the impacts of population subdivision on the mountain bushtail possum Trichosurus caninus Ogilby (Phalangeridae, Marsupialia) in
39.south-eastern Australia. 2. Loss of genetic variability within and between subpopulations. Biol. Cons., 73, 131–142.
40.Lynch, M., Conery, J., Bürger, R. (1995). Mutation meltdowns in sexual populations. Evolution, 49 (6), 1067–1080.
41.Mace, G.M. (2004). The role of taxonomy in species conservation. Philosophical Transaction of the Royal Society of London B, 359, 711–719.
42.McMahon, B.J., Teeling, E.C., Höglund, J. (2014). How and why should we implement genomics into conservation? Evolutionary Applications, 7, 999–1007.
43.Meine, C. (2010). Conservation biology: past and present. In: N.S. Sodhi, P.R. Ehrlich (eds.), Conservation Biology for All (pp. 7–26). Oxford: Oxford University Press.
44.Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution, 9, 373–375.
45.Moro, D., Byrne, M., Kennedy, M., Campbell, S., Tizard, M. (2018). Identifying knowledge gaps for gene drive research to control invasive animal species: the next CRISPR step. Global Ecology and
46.Conservation, 13, e00363.
47.O’Brien, S.J. (1994). A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. U.S.A., 91, 5748–5755.
48.Ouborg, N.J., Pertoldi, C., Loeschcke, V., Bijlsma, R., Hedrick, P.W. (2010). Conservation genetics in transition to conservation genomics. Trends in Genetics, 26 (4), 177–187.
49.Ouborg, N.J., Vriezen, W.H. (2007). An ecologist’s guide to ecogenomics. J. Ecol., 95, 8–16.
50.Pertoldi, C., Randi, E. (2018). The ongoing transition at an exponential speed from Conservation genetics
51.to Conservation genomics. Gen. Biodiv. J, 2 (2), 47–54.
52.Pertoldi, C., Wójcik, J., Tokarska, M., Kawałko, A., Kristensen, T., Loeschcke, V., Gregersen, V., Coltman,
53.D., Wilson, G., Randi, E., Henryon, M., Bendixen, C. (2010). Genome variability in European and American bison detected using the BovineSNP50 BeadChip. Conserv. Genet., 11, 627–634.
54.Puechmaille, S., Petit, E.J. (2007). Empirical evaluation of non-invasive capture-mark-recapture estimation of population size based on a single sampling session. Journal of Applied Ecology, 44,
55.843–852.
56.Romanov, M.N., Koriabine, M., Nefedov, M., de Jong, P.J., Ryder, O.A. (2006). Construction of a Californian condor BAC library and first-generation chicken-condor comparative physical map as an
57.endan-
58.gered species genomics resource. Genomics, 88, 711–718.
59.Ryder, O.A. (1986). Species conservation and systematics: The dilemma of the subspecies. Trends in Ecol-
60.ogy & Evolution, 1, 9–10.
61.Sahlsten, J., Thörngren, H., Höglund, J. (2008). Inference of hazel grouse population structure using mul-
62.tilocus data: a landscape genetic approach. Heredity, 101, 475–482.
63.Skorupski, J., Panicz, R., Śmietana, P., Napora-Rutkowski, Ł., Soroka, M., Kolek, L., Budniak, M., Wąso-
64.wicz, B., Keszka, S., Kempf, M., Moska, M., Zatoń-Dobrowolska, M. (2017). Conservation genetics in Poland – theory and practice. Szczecin: Polish Society for Conservation Genetics LUTREOLA
65.& Faculty of Biology, University of Szczecin.
66.Skorupski, J. (2015). Deklaracja Ideowo-Programowa Polskiego Towarzystwa Genetyki Konserwatorskiej LUTREOLA. Szczecin: Polish Society for Conservation Genetics LUTREOLA.
67.Soulé, M.E. (1985). What Is Conservation Biology? BioScience, 35 (11), 727–734.
68.Taylor, H.R., Dussexa, N., van Heezik, Y. (2017). Bridging the Conservation Genetics Gap by Identifying
69.Barriers to Implementation for Conservation Practitioners. Global Ecology and Conservation, 10, 231–242.
70.Thomsen, P.F., Willerslev, E. (2015). Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation, 183, 4–18.
71.Trombulak, S., Omland, K., Robinson, J., Lusk, J., Fleischner, T., Brown, G., Domroese, M. (2004). Principles of Conservation Biology: Recommended Guidelines for Conservation Literacy from the
72.Education Committee of the Society for Conservation Biology. Conservation Biology, 18, 1180–1190.
73.Weeks, A., Stoklosa, J., Hoffmann, A. (2016). Conservation of genetic uniqueness of populations may increase extinction likelihood of endangered species: the case of Australian mammals.
74.Frontiers in Zoology, 13, 31.
75.Woodruff, D.S. (2000). Populations, species and conservation genetics. In: S. Levin (ed.), Encyclopedia of Biodiversity. Vol. 4 (pp. 811–829). San Diego: Academic Press.
76.Zhan, X. et al. (2013). Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nature Genetics, 45, 563–568.