Autoren: |
Mehrzad
Moghadasi
![]() Department of physical education, Shiraz branch, Islamic Azad University, Shiraz, Iran Hamid Arvin ![]() Department of physical education, Shiraz branch, Islamic Azad University, Shiraz, Iran Hassan Rohbanfard ![]() Faculty of Sport Sciences‚ Bu-Ali Sina University‚ Hamedan‚ Iran Saeed Arsham ![]() Faculty of Physical Education and Sport Sciences‚ Kharazmi University‚ Tehran‚ Iran Alireza Ostovar ![]() Department of Exercise Physiology, Faculty of Physical Education and Sport Science, University of Guilan, Rasht, Iran |
Schlüsselbegriffe: | exercise training oxidative stress BDNF malondialdehyde Autism |
Veröffentlichungsdatum der gesamten Ausgabe: | 2024 |
Seitenanzahl: | 7 (45-51) |
Klasyfikacja JEL: | I19 |
1. | Al-Ayadhi, L. Y. (2012). Relationship between Sonic hedgehog protein, brain-derived neurotrophic factor and oxidative stress in autism spectrum disorders. Neurochemical research, 37, 394–400. https://doi.org/10.1007/s11064-011-0624-x |
2. | Autism Prevalence Higher, According to Data from 11 ADDM Communities. (2023, March 23, 2023). https://www.cdc.gov/media/releases/2023/p0323-autism.html |
3. | Barbosa, A. G., Pratesi, R., Paz, G. S. C., Dos Santos, M. A. A. L., Uenishi, R. H., Nakano, E. Y., . . . Pratesi, C. B. (2020). Assessment of BDNF serum levels as a diagnostic marker in children with autism spectrum disorder. Scientific Reports, 10(1), 17348. https://doi.org/10.1038/s41598-020-74239-x |
4. | Chauhan, A., Chauhan, V., Brown, W. T., & Cohen, I. (2004). Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life sciences, 75(21), 2539–2549. |
5. | de Assis, G. G., & Gasanov, E. V. (2019). BDNF and cortisol integrative system–plasticity vs. degeneration: implications of the Val66Metpolymorphism. Frontiers in Neuroendocrinology, 55, 100784. |
6. | Ennezat, P. V., Malendowicz, S. L., Testa, M., Colombo, P. C., Cohen-Solal, A., Evans, T., & LeJemtel, T. H. (2001). Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. Journal of the American College of Cardiology, 38(1), 194–198. |
7. | Ghezzo, A., Visconti, P., Abruzzo, P. M., Bolotta, A., Ferreri, C., Gobbi, G., . . . Nanetti, L. (2013). Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. PLoS One, 8(6), e66418. |
8. | Gomez-Pinilla, F., Zhuang, Y., Feng, J., Ying, Z., & Fan, G. (2011). Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. European Journal of Neuroscience, 33(3), 383–390. |
9. | Han, Y. M., Yau, S.-Y., Chan, M. M., Wong, C.-K., & Chan, A. S. (2022). Altered cytokine and Bdnf levels in individuals with autism spectrum disorders. Brain Sciences, 12(4), 460. |
10. | Liu, X., Lin, J., Zhang, H., Khan, N. U., Zhang, J., Tang, X., . . . Shen, L. (2022). Oxidative Stress in Autism Spectrum Disorder—Current Progress of Mechanisms and Biomarkers. Frontiers in psychiatry, 13, 813304. |
11. | Liu, Z., Guo, M., Gao, Y., & Jiang, X. (2020). Research progress on the relationship between BDNF, the polymorphysis of its gene, and childhood autism. World Journal of Neuroscience, 10(02), 107. |
12. | McKenzie, T. L., Sallis, J. F., Rosengard, P., & Ballard, K. (2016). The SPARK programs: a public health model of physical education research and dissemination. Journal of Teaching in Physical Education, 35(4), 381–389. |
13. | Mirzavandi, F., Sabet, N., Aminzadeh, A., Heidari, M., Pouya, F., Moslemizadeh, A., . . . Bashiri, H. (2023). Effects of varied‑intensity endurance exercise training on oxidative and antioxidant factors in the liver of rats with valproic acid‑induced autism. Acta Neurobiologiae Experimentalis, 83(1), 25–33. |
14. | Sabet, N., Soltani, Z., & Khaksari, M. (2022). The effects of exercise on kidney injury: the role of SIRT1. Molecular Biology Reports, 49(5), 4025–4038. |
15. | Shen, L., Liu, X., Zhang, H., Lin, J., Feng, C., & Iqbal, J. (2020). Biomarkers in autism spectrum disorders: Current progress. Clinica Chimica Acta, 502, 41–54. |
16. | Skogstrand, K., Hagen, C. M., Borbye-Lorenzen, N., Christiansen, M., Bybjerg-Grauholm, J., Bækvad-Hansen, M., . . . Nordentoft, M. (2019). Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Translational psychiatry, 9(1), 252. |
17. | Zaki, M., El-Bassyouni, H. T., Hamed, K., Moustafa, R. S. I., & Youness, E. R. (2022). Brain derived neurotrophic factor, oxidative stress status and vitamin D levels in patients with autism spectrum disorder. New Zealand Journal of Medical Laboratory Science, 76(1), 10–13. |
18. | Zhang, J., Li, X., Shen, L., Khan, N. U., Zhang, X., Chen, L., . . . Luo, P. (2021). Trace elements in children with autism spectrum disorder: a meta-analysis based on case-control studies. Journal of Trace Elements in Medicine and Biology, 67, 126782. |
19. | Zong, W., Lu, X., Dong, G., Zhang, L., & Li, K. (2023). Molecular mechanisms of exercise intervention in alleviating the symptoms of autism spectrum disorder: Targeting the structural alterations of synapse. Frontiers in psychiatry, 14, 1096503. |