Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2024.3-03
CC BY-SA   Open Access   DOAJ  DOAJ

Liste der Ausgaben / Vol. 47, No. 3/2024
Leukocyte populations detection in young athletes in resting phase based on scatter properties using a Flow Cytometric approach

Autoren: Ornela Marko ORCID
Department of Movement and Health, Faculty of Physical Activity and Recreation Sports University of Tirana, Rruga Muhamet Gjollesha, 1023, Tirana, Albania

Klotilda Vrenjo ORCID
Department of Education and Health, Faculty of Movement Sciences, Sports University of Tirana, Rruga Muhamet Gjollesha, 1023, Tirana, Albania

Majlind Sulçe ORCID
Department of Morphofunctional Modules, Faculty of Veterinary Medicine, Agricultural University of Tirana, Albania
Schlüsselbegriffe: flow cytometry leukocytes populations athletes
Veröffentlichungsdatum der gesamten Ausgabe:2024
Seitenanzahl:7 (29-35)
Cited-by (Crossref) ?:

Abstract

Complete blood count analysis has a major importance as a first laboratory evaluation. In particular data obtained from complete blood count are relevant to correctly diagnose and follow up different medical conditions. In athletes, medical examinations and laboratory test are mandatory, especially when a sportive event will soon take place. Different automatic techniques are used to evaluate percentages of different leukocyte populations with a high accuracy. Flow cytometry represents a technology that is mainly used to diagnose different lymphoproliferative and myeloproliferative neoplastic disorders. In this study 127 samples from clinically healthy young athletes were collected and analyzed with both flow cytometry and automatic method to evaluate the usefulness of flow cytometry in detecting different leukocyte populations based on their scatter properties. Results showed that flow cytometry is a reliable technique having showed a high accuracy for different cell populations. Intra class correlation coefficient was >0.80 for all populations showing a high correlation between the two methods. However, a higher number of cases, the involvement of other automatic techniques are mandatory to confirm these results.
herunterladen

Artikeldatei

Bibliographie

1.Agnello, L., Giglio, R. V., Bivona, G., Scazzone, C., Gambino, C. M., Iacona, A., Ciaccio, A. M., Lo Sasso, B., & Ciaccio, M. (2021). The Value of a Complete Blood Count (CBC) for sepsis diagnosis and prognosis. Diagnostics, 11, 1881. https://doi.org/10.3390/diagnostics11101881
2.Ahmed, M. M., Ghauri, S. K., Javaeed, A., Rafique, N., Hussain, W., & Khan, N. (2020). Trends of utilization of Complete Blood Count parameters for patient management among doctors in Azad Kashmir. Pakistan Journal of Medical Sciences, 36(5), 999–1004. https://doi.org/10.12669/pjms.36.5.1885
3.Atajanov, A., Zhbanov, A. & Yang, S. (2018). Sorting and manipulation of biological cells and the prospects for using optical forces. Micro and Nano Systems Letters, 6(2). https://doi.org/10.1186/s40486-018-0064-3
4.Bachero-Mena, B., Pareja-Blanco, F., González-Badillo, J. J. (2017). Enhanced strength and sprint levels, and changes in blood parameters during a complete athletics season in 800 m high-level athletes. Frontiers in Physiology, 8, 637. https://doi.org/10.3389/fphys.2017.00637
5.Boumiza, R., Debard, A. L., & Monneret, G. (2005). The basophil activation test by flow cytometry: Recent developments in clinical studies, standardization and emerging perspectives. Clinical and Molecular Allergy, 3(9). https://doi.org/10.1186/1476-7961-3-9
6.Box, A., DeLay, M., Tighe, S., Chittur, S. V., Bergeron, A., Cochran, M., Lopez, P., Meyer, E. M., Saluk, A., Thornton, S., & Brundage, K. (2020). Evaluating the effects of cell sorting on gene expression. Journal of Biomolecular Techniques, 31(3), 100–111. https://doi.org/10.7171/jbt.20-3103-004
7.Ciekot-Sołtysiak, M., Kusy, K., Podgórski, T., Pospieszna, B., Zieliński, J. (2024) Changes in red blood cell parameters during incremental exercise in highly trained athletes of different sport specializations. Peer-Reviewed Journal, (27)12: e17040.
8.Drescher, H., Weiskirchen, S., & Weiskirchen, R. (2021). Flow cytometry: A blessing and a curse. Biomedicines, 9(11), 1613. https://doi.org/10.3390/biomedicines9111613
9.Hervieu, C., Verdier, M., Barthout, E., Bégaud, G., Christou, N., Sage, M., Pannequin, J., Battu, S., & Mathonnet, M. (2022). A label-free cell sorting approach to highlight the impact of intratumoral cellular heterogeneity and cancer stem cells on response to therapies. Cells, 11(15), 2264. https://doi.org/10.3390/cells11152264
10.Juchnowicz, D., Dzikowski, M., Rog, J., Waszkiewicz, N., Karakuła, K. H., Zalewska, A., Maciejczyk, M., & Karakula-Juchnowicz, H. (2023). The usefulness of a complete blood countin the prediction of the first episode of schizophrenia diagnosis and its relationship with oxidative stress. PLoS ONE, 18(10), e0292756. https://doi.org/10.1371/journal.pone.0292756
11.Kim, K. H., & Sederstrom, J.M. (2015). Assaying cell cycle status using flow cytometry. Current Protocols in Molecular Biology, 111, 28.6.1–28.6.11. https://doi.org/10.1002/0471142727.mb2806s111
12.Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. Journal of Chiropractic Medicine, 15(2), 155–63. https://doi.org/10.1016/j.jcm.2016.02.012
13.Lassale, C., Curtis, A., Abete, I., Van Der Schouw, Y.T., Verschuren, WMM., Lu, Y., & Bueno-de-Mesquita, HBA. (2018). Elements of the complete blood count associated with cardiovascular disease incidence: Findings from the EPIC-NL cohort study. Scientific Reports, 8, 3290. https://doi.org/10.1038/s41598-018-21661-x
14.Mairbäurl, H. (2013). Red blood cells in sports: Effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 4, 332. https://doi.org/10.3389/fphys.2013.00332
15.Mao, X., Li, Y., Liu, S., He, C., Yi, S., Kuang, D., Xiao, M., Zhu, L., & Wang, C. (2023). Multicolor flow cytometric assessment of Ki67 expression and its diagnostic value in mature B-cell neoplasms. Frontiers in Oncology, 13, 1108837. https://doi.org/10.3389/fonc.2023.1108837
16.Mattanovich, D., & Borth, N. (2006). Applications of cell sorting in biotechnology. Microbial Cell Factories, 5(12). https://doi.org/10.1186/1475-2859-5-12
17.Morse, E. E., Yamase, H. T., Greenberg, B.R., Sporn, J., Harshaw, S. A., Kiraly, T. R., Ziemba, R. A., & Fallon, M. A. (1994). The role of flow cytometry in the diagnosis of lymphoma: a critical analysis. Annals of Clinical and Laboratory Science, 24(1), 6–11.
18.Otto, G., Lamote, A., Deckers, E., Dumont, V., Delahaut, P., Scippo, M. L., Pleck, J., Hillairet, C., & Gillard, N. (2016). A flow-cytometry-based method for detecting simultaneously five allergens in a complex food matrix. Journal of Food Science and Technology, 53(12), 4179–4186. https://doi.org/10.1007/s13197-016-2402-x
19.Robinson, J. P., Ostafe, R., Iyengar, S. N., Rajwa, B., & Fischer, R. (2023). Flow cytometry: The next revolution. Cells, 12(14), 1875. https://doi.org/10.3390/cells12141875
20.Rütgen, B. C., Baumgartner, D., Fuchs-Baumgartinger, A., Rigillo, A., Škor, O., Hammer, S. E., Saalmüller, A., & Schwendenwein, I. (2021). Flow cytometric assessment of ki-67 expression in lymphocytes from physiologic lymph nodes, lymphoma cell populations and remnant normal cell populations from lymphomatous lymph nodes. Frontiers in Veterinary Science, 8, 663656. https://doi.org/10.3389/fvets.2021.663656
21.Sanders, C. K., & Mourant, J. R. (2013). Advantages of full spectrum flow cytometry. Journal of Biomedical Optics, 18(3), 037004. https://doi.org/10.1117/1.JBO.18.3.037004
22.Seo, I. H., & Lee, Y.J. (2022). Usefulness of Complete Blood Count (CBC) to assess cardiovascular and metabolic diseases in clinical settings: A comprehensive literature review. Biomedicines, 10(11), 2697. https://doi.org/10.3390/biomedicines10112697
23.Sulce, M., Marconato, L., Martano, M., Iussich, S., Dentini, A., Melega, M., Miniscalco, M., & Riondato, F. (2018). Utility of flow cytometry in canine primary cutaneous and matched nodal mast cell tumor. The Veterinary Journal, 242, 15–23. https://doi.org/10.1016/j.tvjl.2018.10.004
24.Telford, W. G. (2023). Flow cytometry and cell sorting.Frontiers in Medicine 10, 1287884. https://doi.org/10.3389/fmed.2023.1287884
25.Wedin, J. O., & Henriksson, A. E. (2020). The influence of floorball on hematological parameters: Consequences in health assessment and antidoping testing. Journal of Sports Medicine, 2020, 6109308. https://doi.org/10.1155/2020/6109308
26.Wlodkowic, D., Skommer, J., & Darzynkiewicz, Z. (2009). Flow cytometry-based apoptosis detection. Methods in Molecular Biology, 559, 19–32. https://doi.org/10.1007/978-1-60327-017-5_2
27.Wlodkowic, D., Telford, W., Skommer, J., & Darzynkiewicz, Z. (2011). Apoptosis and beyond: Cytometry in studies of programmed cell death. Methods in Cell Biologyl, 103, 55-98. https://doi.org/10.1016/B978-0-12-385493-3.00004-8