Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2025.1-04
CC BY-SA   Open Access   DOAJ  DOAJ

Liste der Ausgaben / Vol. 49, No. 1/2025
Post-COVID-19 Neuronal Complications and Impact of Physical Activity on the Disease Symptoms: A Narrative Review

Autoren: Ewa Duchnik ORCID
Department of Aesthetic Dermatology, Pomeranian Medical University, Poland

Joanna Kruk ORCID
Institute of Physical Culture Sciences, Faculty of Physical Culture and Health, University of Szczecin, Poland

Mariola Marchlewicz ORCID
Department of Dermatology and Venerology, Pomeranian Medical University, Poland
Schlüsselbegriffe: SARS-CoV-2 neuropathogenicity psycho-physical symptoms inflammation oxidative stress physical exercise
Veröffentlichungsdatum der gesamten Ausgabe:2025-07-31
Seitenanzahl:15 (51-65)
Cited-by (Crossref) ?:

Abstract

The coronavirus disease 2019 (COVID-19) caused a global health crisis, leading to many pathological alternations regarding cells, tissues, organs, and biological systems. Extensive research during the past three years has revealed that even if symptoms of the COVID-19 infection and disease are not severe, the complications after may be critical. Evidence has indicated that apart from the most characteristic complications caused by COVID-19 infection, such as respiratory tract disorders, severe damage to the central and peripheral nervous systems is possible, resulting in neuronal and mental complications. For this reason, the quality of life of severe COVID-19 survivors requires targeting therapy. The most studies focused on a wide spectrum of COVID-19 complications, however, direct evidence of the virus-specific neuropathogenicity and molecular mechanisms involved in this complication are only emerging. We have actual scientific knowledge of post-COVID-19 neurological complications and provide the current evidence on biological mechanisms operating in this process. This review also aims to present how inflammation and oxidative stress may contribute to the disease severity. Finally, we discuss the use of physical exercise (PE) interventions to reduce physical and mental complications in COVID-19 survivors. Findings show that dysregulation of the immune system is characteristic for COVID-19 disease severity. PE can increase muscle strength, respiratory function, decrease dyspnea, and improve survivors’ quality of life. However, randomized controlled trials and observational studies of higher methodological quality are needed to determine effective, individualized and safe amount of exercise to support the evidence.
herunterladen

Artikeldatei

Bibliographie

1.Agostini, F., Mangone, M., Ruiu, P., Paolucci, T., Santilli, V., & Bernetti, A. (2021). Rehabilitation setting during and after Covid-19: An overview on recommendations. Journal of Rehabilitation Medicine, 53(1), jrm00141. https://doi.org/10.2340/16501977-2776.
2.Andrabi, M. S., & Andrabi, S. A. (2020). Neuronal and cerebrovascular complications in coronavirus disease 2019. Frontiers in Pharmacology, 11, 570031. https://doi.org/10.3389/fphar.2020.570031.
3.Arazi, H., Falahati, A., & Suzuki, K. (2021). Moderate intensity aerobic exercise potential favorable effect against COVID-19: The role of renin-angiotensin system and immunomodulatory effects. Frontiers in Physiology, 12, 747200. https://doi.org/10.3389/fphys.2021.747200.
4.Beltrán-García, J., Osca-Verdegal, R., Pallardó, F. V., Ferreres, J., Rodríguez, M., Mulet, S., Sanchis-Gomar, F., Carbonell, N., & García-Giménez, J. L. (2020). Oxidative Stress and Inflammation in COVID-19-Associated Sepsis: The Potential Role of Anti-Oxidant Therapy in Avoiding Disease Progression. Antioxidants, 9(10), 936. https://doi.org/10.3390/antiox9100936.
5.Bigaut, K., Mallaret, M., Baloglu, S., Nemoz, B., Morand, P., Baicry, F., Godon, A., Voulleminot, P., Kremer, L., Chanson, J. B., & de Seze, J. (2020). Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurology(R) Neuroimmunology & Neuroinflammation, 7(5), e785. https://doi.org/10.1212/NXI.0000000000000785.
6.Bohmwald, K., Gálvez, N., Ríos, M., & Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Frontiers in Cellular Neuroscience, 12, 386. https://doi.org/10.3389/fncel.2018.00386.
7.Brann, D. H., Tsukahara, T., Weinreb, C., Lipovsek, M., Van den Berge, K., Gong, B., Chance, R., Macaulay, I. C., Chou, H. J., Fletcher, R. B., Das, D., Street, K., de Bezieux, H. R., Choi, Y. G., Risso, D., Dudoit, S., Purdom, E., Mill, J., Hachem, R. A., Matsunami, H., … Datta, S. R. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Science Advances, 6(31), eabc5801. https://doi.org/10.1126/sciadv.abc5801.
8.Bull, F. C., Al-Ansari, S. S., Biddle, S., Borodulin, K., & Buman, M. P. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955.
9.Cavigli, L., Fusi, C., Focardi, M., Mandoli, G. E., Pastore, M. C., Cameli, M., Valente, S., Zorzi, A., Bonifazi, M., D'Andrea, A., & D'Ascenzi, F. (2022). Post-Acute Sequelae of COVID-19: The Potential Role of Exercise Therapy in Treating Patients and Athletes Returning to Play. Journal of clinical Medicine, 12(1), 288. https://doi.org/10.3390/jcm12010288.
10.Cecchini, R., & Cecchini, A. L. (2020). SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses, 143, 110102. https://doi.org/10.1016/j.mehy.2020.110102.
11.Chatterjee, S. (2016). Oxidative Stress, Inflammation, and Disease. In: Oxidative Stress and Biomaterials. Elsevier, Chap. 2, 35–58. https://doi.org/10.1016/B978-0-12-803269-5.00002-4.
12.Chernyak, B. V., Popova, E. N., Prikhodko, A. S., Grebenchikov, O. A., Zinovkina, L. A., & Zinovkin, R. A. (2020). COVID-19 and oxidative stress. Biochemistry, 85(12), 1543–1553. https://doi.org/10.1134/S0006297920120068.
13.Craft, L. L., Vaniterson, E. H., Helenowski, I. B., Rademaker, A. W., & Courneya, K. S. (2012). Exercise effects on depressive symptoms in cancer survivors: a systematic review and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 21(1), 3–19. https://doi.org/10.1158/1055-9965.EPI-11-0634.
14.Davis, H. E., McCorkell, L., Vogel, J. M., & Topol, E. J. (2023). Long COVID: major findings, mechanisms and recommendations. Nature Reviews Microbiology, 21(3), 133–146. https://doi.org/10.1038/s41579-022-00846-2.
15.de Lemos, E. T., Oliveira, J., Pinheiro, J. P., & Reis, F. (2012). Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative Medicine and Cellular Longevity, 2012, 741545. https://doi.org/10.1155/2012/741545.
16.Delgado-Roche, L., & Mesta, F. (2020). Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Archives of Medical Research, 51(5), 384–387. https://doi.org/10.1016/j.arcmed.2020.04.019.
17.Desai, A. D., Lavelle, M., Boursiquot, B. C., & Wan, E. Y. (2022). Long-term complications of COVID-19. American Journal of Physiology-Cell Physiology, 322(1), C1–C11. https://doi.org/10.1152/ajpcell.00375.2021.
18.Dillen, H., Bekkering, G., Gijsbers, S., Vande Weygaerde, Y., Van Herck, M., Haesevoets, S., Bos, D. A. G., Li, A., Janssens, W., Gosselink, R., Troosters, T., & Verbakel, J. Y. (2023). Clinical effectiveness of rehabilitation in ambulatory care for patients with persisting symptoms after COVID-19: a systematic review. BMC Infectious Diseases, 23(1), 419. https://doi.org/10.1186/s12879-023-08374-x.
19.Evangelista F. S. (2020). Physical exercise and the renin angiotensin system: Prospects in the COVID-19. Frontiers in Physiology, 11, 561403. https://doi.org/10.3389/fphys.2020.561403
20.Fagni, F., Simon, D., Tascilar, K., Schoenau, V., Sticherling, M., Neurath, M. F., & Schett, G. (2021). COVID-19 and immune-mediated inflammatory diseases: effect of disease and treatment on COVID-19 outcomes and vaccine responses. The Lancet Rheumatology, 3(10), e724–e736. https://doi.org/10.1016/S2665-9913(21)00247-2.
21.Fernández-Lázaro, D., Santamaría, G., Sánchez-Serrano, N., Lantarón Caeiro, E., & Seco-Calvo, J. (2022). Efficacy of therapeutic exercise in reversing decreased strength, impaired respiratory function, decreased physical fitness, and decreased quality of life caused by the post-COVID-19 Syndrome. Viruses, 14(12), 2797. https://doi.org/10.3390/v14122797.
22.Forman, H. J., & Zhang, H. (2021). Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20, 689–709. https://doi.org/10.1038/s41573-021-00233-1.
23.Franke, C., Berlit, P., & Prüss, H. (2022). Neurological manifestations of post-COVID-19 syndrome: S1-guideline of the German Society of Neurology. Neurology Research and Practice, 4(1), 28. https://doi.org/10.1186/s42466-022-00191-y.
24.Franke, C., Boesl, F., Goereci, Y., Gerhard, A., Schweitzer, F., Schroeder, M., Foverskov-Rasmussen, H., Heine, J., Quitschau, A., Kandil, F. I., Schild, A. K., Finke, C., Audebert, H. J., Endres, M., Warnke, C., & Prüss, H. (2023). Association of cerebrospinal fluid brain-binding autoantibodies with cognitive impairment in post-COVID-19 syndrome. Brain, Behavior, and Immunity, 109, 139–143. https://doi.org/10.1016/j.bbi.2023.01.006.
25.Fugazzaro, S., Contri, A., Esseroukh, O., Kaleci, S., Croci, S., Massari, M., Facciolongo, N. C., Besutti, G., Iori, M., Salvarani, C., Costi, S., & Reggio Emilia COVID-19 Working Group (2022). Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. International Journal of Environmental Research and Public Health, 19(9), 5185. https://doi.org/10.3390/ijerph19095185.
26.Goldstein, S., Meyerstein, D., & Czapski, G. (1993). The Fenton reagents. Free Radical Biology and Medicine, 15(4), 435–445. https://doi.org/10.1016/0891-5849(93)90043-t.
27.Gondim, O. S., de Camargo, V. T., Gutierrez, F. A., Martins, P. F., Passos, M. E., Momesso, C. M., Santos, V. C., Gorjão, R., Pithon-Curi, T. C., & Cury-Boaventura, M. F. (2015). Benefits of Regular Exercise on Inflammatory and Cardiovascular Risk Markers in Normal Weight, Overweight and Obese Adults. PloS One, 10(10), e0140596. https://doi.org/10.1371/journal.pone.0140596.
28.Hasenoehrl, T., Palma, S., Huber, D. F., Kastl, S., Steiner, M., Jordakieva, G., & Crevenna, R. (2023). Post-COVID: effects of physical exercise on functional status and work ability in health care personnel. Disability and Rehabilitation, 45(18), 2872–2878. https://doi.org/10.1080/09638288.2022.2111467.
29.Hassett, C. E., Gedansky, A., Migdady, I., Bhimraj, A., Uchino, K., & Cho, S. M. (2020). Neurologic complications of COVID-19. Cleveland Clinic Journal of Medicine, 87(12), 729–734. https://doi.org/10.3949/ccjm.87a.ccc058.
30.Hatmal, M. M., Alshaer, W., Al-Hatamleh, M. A. I., Hatmal, M., Smadi, O., Taha, M. O., Oweida, A. J., Boer, J. C., Mohamud, R., & Plebansky, M. (2020). Comprehensive structural and molecular comparison of spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, and their interactions with ACE2. Cells, 9(12), 2638. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cells9122638.
31.Huang, C., Huang, L., Wang, Y., Li, X., Ren, L., Gu, X., Kang, L., Guo, L., Liu, M., Zhou, X., Luo, J., Huang, Z., Tu, S., Zhao, Y., Chen, L., Xu, D., Li, Y., Li, C., Peng, L., Li, Y., Xie, W., Cui, D., Shang, L., Fan, G., Xu, J., Wang, G., Wang, Y., Zhong, J., Wang, J., Zhang, D., Cao, B. (2021). 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet (London, England), 397(10270), 220–232. https://doi.org/10.1016/S0140-6736(20)32656-8.
32.Jiao, L., Yang, Y., Yu, W., Zhao, Y., Long, H., Gao, J., Ding, K., Ma, C., Li, J., Zhao, S., Wang, H., Li, H., Yang, M., Xu, J., Wang, J., Yang, J., Kuang, D., Luo, F., Qian, X., Xu, L., … Peng, X. (2021). The olfactory route is a potential way for SARS-CoV-2 to invade the central nervous system of rhesus monkeys. Signal Transduction and Targeted Therapy, 6(1), 169. https://doi.org/10.1038/s41392-021-00591-7.
33.Jimeno-Almazán, A., Pallarés, J. G., Buendía-Romero, Á., Martínez-Cava, A., Franco-López, F., Sánchez-Alcaraz Martínez, B. J., Bernal-Morel, E., & Courel-Ibáñez, J. (2021). Post-COVID-19 Syndrome and the Potential Benefits of Exercise. International Journal of Environmental Research and Public Health, 18(10), 5329. https://doi.org/10.3390/ijerph18105329.
34.Kleineberg, N. N., Knauss, S., Gülke, E., Pinnschmidt, H. O., Jakob, C. E. M., Lingor, P., Hellwig, K., Berthele, A., Höglinger, G., Fink, G. R., Endres, M., Gerloff, C., Klein, C., Stecher, M., Classen, A. Y., Rieg, S., Borgmann, S., Hanses, F., Rüthrich, M. M., Hower, M., … LEOSS Study Group (2021). Neurological symptoms and complications in predominantly hospitalized COVID-19 patients: Results of the European multinational Lean European Open Survey on SARS-Infected Patients (LEOSS). European Journal of Neurology, 28(12), 3925–3937. https://doi.org/10.1111/ene.15072.
35.Kramer, A. (2020). An overview of the beneficial effects of exercise on health and performance. Advances in Experimental Medicine and Biology, 1228, 3–22. https://doi.org/10.1007/978-981-15-1792-1_1.
36.Kruk, J., Aboul-Enein, B. H., Bernstein, J., & Gronostaj, M. (2019). Psychological stress and cellular aging in cancer: a meta-analysis. Oxidative Medicine and Cellular Longevity, 2019, 1270397. https://doi.org/10.1155/2019/1270397.
37.Kumar, A., Pareek, V., Prasoon, P., Faiq, M. A., Kumar, P., Kumari, C., & Narayan, R. K. (2020). Possible routes of SARS-CoV-2 invasion in the brain: In context of neurological symptoms in COVID-19 patients. Journal of Neuroscience Research, 98(12), 2376–2383. https://doi.org/10.1126/sciadv.abc5801.
38.Laforge, M., Elbim, C., Frère, C., Hémadi, M., Massaad, C., Nuss, P., Benoliel, C., Becker, C. (2020). Tissue damage from neutrophil-induced oxidative stress in COVID-19. Nature Reviews Immunology, 20(9), 515-516. https://doi.org/10.1038/s41577-020-0407-1.
39.Li, Y., Li, M., Wang, M., Zhou, Y., Chang, J., Xian, Y., Wang, L., Mao, L., Jin, H., Hu, B. (2020). Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vascular Neurology, 5(3), 279–284. https://doi.org/10.1136/svn-2020-000431.
40.Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513.
41.London North West University Healthcare NHS Trust Physiotherapy Department. (2020). Past Covid-19 physiotherapy advice and exercise programme. Reference: 152020. https://enderley.nhs.uk
42.Mahalakshmi, A. M., Ray, B., Tuladhar, S., Bhat, A., Paneyala, S., Patteswari, D., Sakharkar, M. K., Hamdan, H., Ojcius, D. M., Bolla, S. R., Essa, M. M., Chidambaram, S. B., & Qoronfleh, M. W. (2021). Does COVID-19 contribute to development of neurological disease?. Immunity, Inflammation and Disease, 9(1), 48–58. https://doi.org/10.1002/iid3.387.
43.Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & HLH Across Speciality Collaboration, UK. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0.
44.Najafi, M., & Mahdavi, M. R. (2023). Association investigations between ACE1 and ACE2 polymorphisms and severity of COVID-19 disease. Molecular Genetics and Genomics, 298(1), 27–36. https://doi.org/10.1007/s00438-022-01953-8.
45.Nam, H., Chandra, R., Francis, T. C., Dias, C., Cheer, J. F., & Lobo, M. K. (2019). Reduced nucleus accumbens enkephalins underlie vulnerability to social defeat stress. Neuropsychopharmacology, 44(11), 1876–1885. https://doi.org/10.1038/s41386-019-0422-8.
46.Netland, J., Meyerholz, D. K., Moore, S., Cassell, M., & Perlman, S. (2008). Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of Virology, 82(15), 7264–7275. https://doi.org/10.1128/JVI.00737-08.
47.Nieman, D. C., & Wentz, L. M. (2019). The compelling link between physical activity and the body's defense system. Journal of Sport and Health Science, 8(3), 201–217. https://doi.org/10.1016/j.jshs.2018.09.009.
48.Odynets, T., Briskin, Y., Todorova, V., & Bondarenko, O. (2019). Impact of different exercise interventions on anxiety and depression in breast cancer patients. Physiotherapy Quarterly, 27(4), 31–36. https://doi.org/10.5114/pq.2019.87737.
49.Ong, I. Z., Kolson, D. L., & Schindler, M. K. (2023). Mechanisms, effects, and management of neurological complications of post-acute sequelae of COVID-19 (NC-PASC). Biomedicines, 11(2), 377. https://doi.org/10.3390/biomedicines11020377.
50.Othman, H., Bouslama, Z., Brandenburg, J. T., da Rocha, J., Hamdi, Y., Ghedira, K., Srairi-Abid, N., & Hazelhurst, S. (2020) Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism, Biochemical and Biophysical Research Communications, 527(3), 702–708. https://doi.org/10.1016/j.bbrc.2020.05.028.
51.Paniz-Mondolfi, A., Bryce, C., Grimes, Z., Gordon, R. E., Reidy, J., Lednicky, J., Sordillo, E. M., & Fowkes, M. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Medical Virology, 92(7), 699–702. https://doi.org/10.1002/jmv.25915.
52.Patsou, E. D., Alexias, G. D., Anagnostopoulos, F. G., & Karamouzis, M. V. (2017). Effects of physical activity on depressive symptoms during breast cancer survivorship: a meta-analysis of randomised control trials. ESMO Open, 2(5), e000271. https://doi.org/10.1136/esmoopen-2017-000271.
53.Pedersen, B. K., & Saltin, B. (2015). Exercise as medicine - evidence for prescribing exercise as therapy in 26 different chronic diseases. Scandinavian Journal of Medicine & Science in Sports, 25(3), 1–72. https://doi.org/10.1111/sms.12581.
54.Platto, S., Wang, Y., Zhou, J. & Carafoli, E. (2021) History of the COVID-19 Pandemic: Origin, Explosion, Worldwide Spreading. Biochemical and Biophysical Research Communications, 538, 14–23. https://doi.org/10.1016/j.bbrc.2020.10.087.
55.Poyiadji, N., Shahin, G., Noujaim, D., Stone, M., Patel, S., & Griffith, B. (2020). COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology, 296(2), E119–E120. https://doi.org/10.1148/radiol.2020201187.
56.Prado, A. K. G., Alves, J. C. de A., Gurginski, R. N. M., Mikuni, T., Zata, D., Albuquerque, P. L. M. da S., & Oliveira, J. R. G. de. (2022). Exercise recommendations after COVID-19 infection: a scoping review. Revista Brasileira de Atividade Física & Saúde, 27, 1–12. https://rbafs.org.br/RBAFS/article/view/14729.
57.Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine, 49(11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006.
58.Sallis, R., Young, D.R., Tartof, S.R., Sallis, J.F., Sall, J., Li, Q., Smith, G.N., & Cohen, D.A. (2021). Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48,440 adult patients. British Journal of Sports Medicine, 55(19), 1099–1105. https://doi.org/10.1136/bjsports-2021-104080.
59.Scheibenbogen, C., Bellmann-Strobl, J. T., Heindrich, C., Wittke, K., Stein, E., Franke, C., Prüss, H., Preßler, H., Machule, M. L., Audebert, H., Finke, C., Zimmermann, H. G., Sawitzki, B., Meisel, C., Toelle, M., Krueger, A., Aschenbrenner, A. C., Schultze, J. L., Beyer, M. D., Ralser, M., … Burock, S. (2023). Fighting Post-COVID and ME/CFS - development of curative therapies. Frontiers in medicine, 10, 1194754. https://doi.org/10.3389/fmed.2023.1194754.
60.Scheidl, E., Canseco, D. D., Hadji-Naumov, A., & Bereznai, B. (2020). Guillain-Barré syndrome during SARS-CoV-2 pandemic: A case report and review of recent literature. Journal of Peripheral Nervous System, 25(2), 204–207. https://doi.org/10.1111/jns.12382.
61.Schönrich, G., Raftery, M. J., & Samstag, Y. (2020). Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation, 77, 100741. https://doi.org/10.1016/j.jbior.2020.100741.
62.Scialo, F., Daniele, A., Amato, F., Pastore, L., Matera, M. G., Cazzola, M., Castaldo, G., & Bianco, A. (2020) ACE2: The major cell entry receptor for SARS-CoV-2, Lung, 198, 867–877. https://doi.org/10.1007/s00408-020-00408-4.
63.Shrihari, T. G. (2018). Endorphins – a natural healer. Journal of Cancer Prevention & Current Research, 9(5), 233–234. https://doi.org/10.15406/jcpcr.2018.09.00358.
64.Sies, H. (2015). Oxidative stress: a concept in redox biology and medicine. Redox Biology, 4, 180–183. https://doi.org/10.1016/j.redox.2015.01.002.
65.Sies, H., & Jones, D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signaling agents. Nature Reviews Molecular Cell Biology, 21(7), 363–383. https://doi.org/10.1038/s41580-020-0230-3.
66.Simioni, C., Zauli, G., Martelli, A. M., Vitale, M., Sacchetti, G., Gonelli, A., & Neri, L. M. (2018). Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget, 9(24), 17181–17198. https://doi.org/10.18632/oncotarget.24729.
67.Singh, A .K., Bhushan, B., Maurya, A., Mishra, G., Singh, S. K., & Awasthi, R. (2020). Novel coronavirus disease 2019 (COVID-19) and neurodegenerative disorders. Dermatologic Therapy, 33(4), e13591. https://doi.org/10.1111/dth.13591.
68.Sungnak, W., Huang, N., Bécavin, C., Berg, M., Queen, R., Litvinukova, M., Talavera-López, C., Maatz, H., Reichart, D., Sampaziotis, F., Worlock, K. B., Yoshida, M., Barnes, J. L., & HCA Lung Biological Network (2020). SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine, 26(5), 681–687. https://doi.org/10.1038/s41591-020-0868-6.
69.Tang, L., Yin, Z., Hu, Y., & Mei, H. (2020). Controlling cytokine storm is vital in COVID-19. Frontiers in Immunology, 11, 570993. https://doi.org/10.3389/fimmu.2020.570993.
70.Thirupathi, A., Pinho, R. A., Ugbolue, U. C., He, Y., Meng, Y., & Gu, Y. (2021). Effect of running exercise on oxidative stress biomarkers: a systematic review. Frontiers in Physiology, 11, 610112. https://doi.org/10.
71.Uttara, B., Singh, A. V., Zamboni, P., & Mahajan, R. T. (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Current Neuropharmacology, 7(1), 65–74. https://doi.org/10.2174/157015909787602823.
72.Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001.
73.Vina, J., Sanchis-Gomar, F., Martinez-Bello, V., & Gomez-Cabrera, M. C. (2012). Exercise acts as a drug; the pharmacological benefits of exercise. British Journal of Pharmacology, 167(1), 1–12. https://doi.org/10.1111/j.1476-5381.2012.01970.x.
74.Wang, F., Kream, R. M., & Stefano, G. B. (2020) Long-term respiratory and neurological sequelae of COVID-19, Medical Science Monitor, 26, e928996. https://doi.org/10.12659/MSM.928996.
75.Wang, S., Qiu, Z., Hou, Y., Deng, X., Xu, W., Zheng, T., Wu, P., Xie, S., Bian, W., Zhang, C., Sun, Z., Liu, K., Shan, C., Lin, A., Jiang, S., Xie, Y., Zhou, Q., Lu, L., Huang, J., & Li, X. (2021). AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Research, 31(2), 126–140. https://doi.org/10.1038/s41422-020-00460-y.
76.Willison, H. J., Jacobs, B. C., & van Doorn, P. A. (2016). Guillain-Barré syndrome. The Lancet, 388(10045), 717–727. https://doi.org/10.1016/S0140-6736(16)00339-1.
77.World Health Organization. (2020a). Stay physically active during self-quarantine. https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/publications-and-technical-guidance/noncommunicable-diseases/stay-physically-active-during-self-quarantine.
78.World Health Organization. Regional Office for Europe. (2020b). Support for rehabilitation: self-management after COVID-19-related illness.
79.Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., & Yang, C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, 87, 18–22. https://doi.org/10.1016/j.bbi.2020.03.031.
80.Xie, J., Ding, C., Li, J., Wang, Y., Guo, H., Lu, Z., Wang, J., Zheng, C., Jin, T., Gao, Y., & He, H. (2020) Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. Journal of Medical Virology, 92(10), 2004–2010. https://doi.org/10.1002/jmv.25930.
81.Xu, E., Xie, Y., & Al-Aly, Z. (2022). Long-term neurologic outcomes of COVID-19. Nature Medicine, 28(12), 2406–2415. https://doi.org/10.1038/s41591-022-02001-z.
82.Yang, J., Li, X., He, T., Ju, F., Qiu, Y., & Tian, Z. (2022). Impact of Physical Activity on COVID-19. International Journal of Environmental Research and Public Health, 19(21), 14108. https://doi.org/10.3390/ijerph192114108.
83.Zhang, L., Zhou, L., Bao, L., Liu, J., Zhu, H., Lv, Q., Liu, R., Chen, W., Tong, W., Wei, Q., Xu, Y., Deng, W., Gao, H., Xue, J., Song, Z., Yu, P., Han, Y., Zhang, Y., Sun, X., Yu, X., & Qin, C. (2021). SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduction and Targeted Therapy, 6(1), 337. https://doi.org/10.1038/s41392-021-00719-9.
84.Zhao, Q., Meng, M., Kumar, R., Wu, Y., Huang, J., Deng, Y., Weng, Z., & Yang, L. (2020). Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systematic review and meta-analysis. International Journal of Infectious Diseases, 96, 131–135. https://doi.org/10.1016/j.ijid.2020.04.086.
85.Ziegler, C. G. K., Allon, S. J., Nyquist, S. K., Mbano, I. M., Miao, V. N., Tzouanas, C. N., Cao, Y., Yousif, A. S., Bals, J., Hauser, B. M., Feldman, J., Muus, C., Wadsworth, M. H., 2nd, Kazer, S. W., Hughes, T. K., Doran, B., Gatter, G. J., Vukovic, M., Taliaferro, F., Mead, B. E., … HCA Lung Biological Network (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell, 181(5), 1016–1035.e19. https://doi.org/10.1016/j.cell.2020.04.035.