Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2025.1-09
CC BY-SA   Open Access   DOAJ  DOAJ

Liste der Ausgaben / Vol. 49, No. 1/2025
Validity and Reliability Analysis Among Three Different Fat Assessment Methods in Trained Indian Male Athletes

Autoren: Yumnam Momo Singh ORCID
Department of Sports Anthropometry, Sports Authority of India, Netaji Subhas National Institute of Sports, Old Moti Bagh, Patiala, Punjab-147001, India

Surojit Sarkar ORCID
Department of Exercise Physiology, Sports Authority of India, Netaji Subhas National Institute of Sports, Old Moti Bagh, Patiala, Punjab-147001, India

Anurag Chaurasia ORCID
Department of Sports Anthropometry, Sports Authority of India, Udhav Das Mehta (Bhai Ji) Central Regional Centre, Gram-Gora, Bishenkheri, Suraj Nagar, Bhopal, Madhya Pradesh- 462044, India
Schlüsselbegriffe: body composition body fat estimate bioelectrical impedance analysis BOD POD skinfold caliper
Veröffentlichungsdatum der gesamten Ausgabe:2025-07-31
Seitenanzahl:10 (119-128)
Cited-by (Crossref) ?:

Abstract

Background: The present study aims to investigate the criterion validity and reliability of three different BF% assessing methods i.e., skinfold caliper (SF), bioelectrical impedance analysis (BIA), and air-displacement plethysmography (BOD POD). Methods: Present study was conducted on 51 trained male Indian athletes (aged: 19 - 29 years). The BF% was measured via SF, BIA, and BOD POD with standard protocol. Statistical analysis was done using SPSS software. Results: The BF% from BIA was reported significantly (p < 0.001) higher than skinfold (∆ 28.7%), and BOD POD (∆ 25.4%). Very good reliability was found for BOD POD vs skinfold [with ICC = 0.891 (0.809-0.938)] and good reliability for Skinfold vs BIA [ICC = 0.669 (-0.207 – 0.895)] and BIA vs BOD POD [ICC = 0.736 (-0.164 – 0.912)]. Pearson’s correlation depicted a positive correlation among various BF% methods (Pearson’s r varies = 0.800 to 0.849; p < 0.01).Limits of agreement were reported significant for skinfold vs BIA (p < 0.001, β= -0.530), and BOD POD vs skinfold (p < 0.01, β= 0.453). Conclusion: Validity analysis depicts that BIA overestimates BF% in male athletes compared to BOD POD and SF methods. All BF% methods were found reliable although BOD POD vs Skinfold depicted major reliability (ICC = 0.891) over other methods.
herunterladen

Artikeldatei

Bibliographie

1.Ackland, T. R., Lohman, T. G., Sundgot-Borgen, J., Maughan, R. J., Meyer, N. L., Stewart, A. D., & Müller, W. (2012). Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the IOC Medical Commission. Sports Medicine, 42(3), 227–249. https://doi.org/10.2165/11597140-000000000-00000
2.Aandstad, A., Holtberget, K., Hageberg, R., Holme, I., & Anderssen, S. A. (2014). Validity and reliability of bioelectrical impedance analysis and skinfold thickness in predicting body fat in military personnel. Military Medicine, 179(2), 208–217. https://doi.org/10.7205/MILMED-D-12-00545
3.Altman, D. G. (1991). Practical statistics for medical research. Chapman & Hall.
4.Antonio, J., Kenyon, M., Ellerbroek, A., Carson, C., Tyler-Palmer, D., Burgess, V., & Peacock, C. (2019). Body composition assessment: A comparison of the bod pod, InBody 770, and DXA. Journal of Exercise and Nutrition, 2(2), 1–7.
5.Bi, X., Loo, Y. T., & Henry, C. J. (2018). Body fat measurements in Singaporean adults using four methods. Nutrients, 10(3), 303. https://doi.org/10.3390/nu10030303
6.Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 1(8476), 307–310. https://doi.org/10.1016/s0140-6736(86)90837-8
7.Brožek, J., Grande, F., Anderson, J. T., & Keys, A. (1963). Densitometric analysis of body composition: Revision of some quantitative assumptions. Annals of the New York Academy of Sciences, 110(1), 113–140. https://doi.org/10.1111/j.1749-6632.1963.tb17079.x
8.Burns, R. D., Fu, Y., & Constantino, N. (2019). Measurement agreement in percent body fat estimates among laboratory and field assessments in college students: Use of equivalence testing. PLOS ONE, 14(3), e0214029. https://doi.org/10.1371/journal.pone.0214029
9.Campa, F., Matias, C. N., Nikolaidis, P. T., Lukaski, H., Talluri, J., & Toselli, S. (2020). Prediction of somatotype from bioimpedance analysis in elite youth soccer players. International Journal of Environmental Research and Public Health, 17(21), 8176. https://doi.org/10.3390/ijerph17218176
10.COSMED. (2019). BOD POD gold standard body composition tracking system operator’s manual (P/N 210-2400 Rev. T-DCO 1973). COSMED USA, Inc.
11.Dempster, P., & Aitkens, S. (1995). A new air displacement method for the determination of human body composition. Medicine and Science in Sports and Exercise, 27(12), 1692–1697. https://doi.org/10.1249/00005768-199512000-00016
12.Duren, D. L., Sherwood, R. J., Czerwinski, S. A., Lee, M., Choh, A. C., Siervogel, R. M., & Chumlea, W. C. (2008). Body composition methods: Comparisons and interpretation. Journal of Diabetes Science and Technology, 2(6), 1139–1146. https://doi.org/10.1177/193229680800200623
13.Durnin, J. V., & Womersley, J. V. G. A. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32(1), 77–97. https://doi.org/10.1079/BJN19740060
14.Esco, M. R., Snarr, R. L., Leatherwood, M. D., Chamberlain, N. A., Redding, M. L., Flatt, A. A., & Williford, H. N. (2015). Comparison of total and segmental body composition using DXA and multifrequency bioimpedance in collegiate female athletes. Journal of Strength and Conditioning Research, 29(4), 918–925. https://doi.org/10.1519/JSC.0000000000000732
15.Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole.
16.Ezzat, A. M., Schneeberg, A., Koehoorn, M., & Emery, C. A. (2016). Association between body composition and sport injury in Canadian adolescents. Physiotherapy Canada, 68(3), 275–281. https://doi.org/10.3138/ptc.2015-59
17.Fields, D. A., Goran, M. I., & McCrory, M. A. (2002). Body-composition assessment via air-displacement plethysmography in adults and children: A review. American Journal of Clinical Nutrition, 75(3), 453–467. https://doi.org/10.1093/ajcn/75.3.453
18.Fields, D. A., Higgins, P. B., & Gower, B. A. (2001). Effect of scalp and facial hair on percent body fat estimates by the bod pod. Medicine and Science in Sports and Exercise, 33(5), S174. https://doi.org/10.1097/00005768-200105001-00042
19.Forejt, M., Pokorová, K., Uher, M., Novák, J., Čermáková, E. (2023). Changes in segmental impedances and selected body composition parameters assessed by multi-frequency bioimpedance analysis after fluid consumption in healthy young population. International Journal of Medical Sciences, 20(13), 1783–1790. https://doi.org/10.7150/ijms.77396
20.Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(Suppl 2), 139–147. https://doi.org/10.1007/s40279-014-0253-z
21.Huovinen, H. T., Hulmi, J. J., Isolehto, J., Kyröläinen, H., Puurtinen, R., Karila, T., & Mero, A. A. (2015). Body composition and power performance improved after weight reduction in male athletes without hampering hormonal balance. Journal of Strength and Conditioning Research, 29(1), 29–36. https://doi.org/10.1519/JSC.0000000000000619
22.Lohman, T. G., & Pollock, M. L. (1981). Skinfold measurement: Which caliper? How much training? Journal of Physical Education Recreation, 52(1), 27–29.
23.Long, V., Short, M., Smith, S., Sénéchal, M., & Bouchard, D. R. (2019). Testing bioimpedance to estimate body fat percentage across different hip and waist circumferences. Journal of Sports Medicine, 11, 7624253. https://doi.org/10.1155/2019/7624253
24.Manual ISAK. (2019). International standards for anthropometric assessment. UCAM Universidad Católica de Murcia.
25.Martín-Rodríguez, A., Belinchón-deMiguel, P., Rubio-Zarapuz, A., Tornero-Aguilera, J. F., Martínez-Guardado, I., Villanueva-Tobaldo, C. V., & Clemente-Suárez, V. J. (2024). Advances in understanding the interplay between dietary practices, body composition, and sports performance in athletes. Nutrients, 16(4), 571. https://doi.org/10.3390/nu16040571
26.Mathisen, T. F., Ackland, T., Burke, L. M., Constantini, N., Haudum, J., Macnaughton, L. S., & Sundgot-Borgen, J. (2023). Best practice recommendations for body composition considerations in sport to reduce health and performance risks: A critical review, original survey, and expert opinion by a subgroup of the IOC consensus on relative energy deficiency in sport (REDs). British Journal of Sports Medicine, 57(17), 1148–1158. https://doi.org/10.1136/bjsports-2023-106812
27.Montgomery, M. M., Marttinen, R. H., & Galpin, A. J. (2017). Comparison of body fat results from 4 bioelectrical impedance analysis devices vs. air displacement plethysmography in American adolescent wrestlers. International Journal of Kinesiology and Sports Science, 5(4), 18–25. https://doi.org/10.7575/aiac.ijkss.v.5n.4p.18
28.Oeffinger, D. J., Gurka, M. J., Kuperminc, M., Hassani, S., Buhr, N., & Tylkowski, C. (2014). Accuracy of skinfold and bioelectrical impedance assessments of body fat percentage in ambulatory individuals with cerebral palsy. Developmental Medicine and Child Neurology, 56(5), 475–481. https://doi.org/10.1111/dmcn.12342
29.Schubert, M. M., Seay, R. F., Spain, K. K., Clarke, H. E., & Taylor, J. K. (2019). Reliability and validity of various laboratory methods of body composition assessment in young adults. Clinical Physiology and Functional Imaging, 39(2), 150–159. https://doi.org/10.1111/cpf.12550
30.Sirirat, R., Heskey, C., Wilson, C., Bitok, E., Jones, J., & Clarke, A. (2020). A comparison of body composition measurements between bioelectrical impedance analysis (InBody 570) and air displacement plethysmography (BOD POD®). Current Developments in Nutrition, 4(Suppl 2). https://doi.org/10.1093/cdn/nzaa063_087
31.Staśkiewicz, W., Grochowska-Niedworok, E., Zydek, G., Grajek, M., Krupa-Kotara, K., Białek-Dratwa, A., & Kardas, M. (2023). The assessment of body composition and nutritional awareness of football players according to age. Nutrients, 15(3), 705. https://doi.org/10.3390/nu15030705
32.Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(1), 1273–1296.
33.Williams, C. A., & Bale, P. (1998). Bias and limits of agreement between hydrodensitometry, bioelectrical impedance, and skinfold calipers measures of percentage body fat. European Journal of Applied Physiology and Occupational Physiology, 77, 271–277. https://doi.org/10.1007/s004210050332
34.Yang, S. W., Kim, T. H., & Choi, H. M. (2018). The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. Journal of Exercise Rehabilitation, 14(4), 621. https://doi.org/10.12965/jer.1836284.142