Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2019.1-03
CC BY-SA   Open Access   DOAJ  DOAJ

Issue archive / Vol. 25, No. 1/2019
Effects of Multipath and Conventional NMES on Maximum Comfortable Stimulus and Torque Production

Authors: Cody B. Bremner
Department of Kinesiology & Outdoor Recreation,Southern Utah University, USA

William R. Holcomb
College of Health Professions, Mercer University, USA
Keywords: Multipath NMES quadriceps
Data publikacji całości:2019-03-31
Page range:11 (23-33)
Cited-by (Crossref) ?:

Abstract

A novel multipath NMES (m-NMES) device has shown improved outcomes relative to conventional NMES (c-NMES) during recent basic and training studies. However, the mechanisms by which m-NMES outperformed c-NMES remain unclear. This study aimed to better understand these mechanisms by comparing the effects of m-NMES and c-NMES on maximum comfortable stimulus intensity and the subsequent NMES-induced torque, as these variables ultimately impact NMES training intensity; which is considered to be the primary determinant of NMES effectiveness. We measured maximum comfortable stimulus intensity and the subsequent NMES-induced torque while participants performed NMES-induced contractions under two conditions (m-NMES and c-NMES). Maximum comfortable stimulus intensity was significantly greater under the m-NMES condition, but the subsequent NMES-induced torque was not significantly different across conditions. m-NMES does not appear to influence the outcomes in a clinically meaningful manner, since it performed similarly to c-NMES with respect to peak NMES-induced torque.
Download file

Article file

Bibliography

1.Adams, G.R., Harris, R.T., Woodard, D., Dudley, G.A. (1993). Mapping of electrical muscle stimulation using MRI. Journal of applied physiology, 74 (2), 532–537.
2.Alon, G., Smith, G.V. (2005). Tolerance and conditioning to neuro-muscular electrical stimulation within and between sessions and gender. J Sports Sci Med, 4 (4), 395–405.
3.Asakawa, Y., Jung, J., Koh, S. (2014). Neuromuscular electrical stimulation improves strength, pain and weight distribution on patients with knee instability post surgery. Physical Therapy Rehabilitation Science, 3 (2), 112–118. DOI: 10.14474/ptrs.2014.3.2.112.
4.Bremner, C.B., Holcomb, W.R. (in-press). A Comparison of Multipath and Conventional Neuromuscular Electrical Stimulation. Athletic Training & Sports Health Care.
5.Bremner, C.B., Holcomb, W.R., Brown, C.D. (2015). Knee Joint Angle Influences Neuromuscular Electrical Stimulation-Induced Torque. Athletic Training & Sports Health Care, 7 (4), 165–172. DOI: 10.3928/19425864-20150707-07.
6.Bruce-Brand, R.A., Walls, R.J., Ong, J.C., Emerson, B.S., O’Byrne, J.M., Moyna, N.M. (2012). Effects of home-based resistance training and neuromuscular electrical stimulation in knee osteoarthritis: a randomized controlled trial. BMC musculoskeletal disorders, 13 (118), 1–10.
7.Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, N.J.: Lawrence Erlbaum Associates.
8.Coote, S., Hughes, L., Rainsford, G., Minogue, C., Donnelly, A. (2015). Pilot randomized trial of progressive resistance exercise augmented by neuromuscular electrical stimulation for people with multiple sclerosis who use walking aids. Arch Phys Med Rehabil, 96 (2), 197–204. DOI: 10.1016/j.apmr.2014.09.021.
9.Cumming, G. (2012). Understanding the New Statistics: Effect Sizes, Confidence Intervals, and Meta-analysis. New York, NY: Routledge.
10.Dantas, L.O., Vieira, A., Siqueira, A.L., Jr., Salvini, T.F., Durigan, J.L. (2015). Comparison between the effects of 4 different electrical stimulation current waveforms on isometric knee extension torque and perceived discomfort in healthy women. Muscle Nerve, 51 (1), 76–82. DOI: 10.1002/mus.24280.
11.Doucet, B.M., Lam, A., Griffin, L. (2012). Neuromuscular Electrical Stimulation for Skeletal Muscle Funciton. Yale Journal of Biology and Medicine, 85 (2), 201–215.
12.Faul, F., Erdfelder, E., Lang, A.G., Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39 (2), 175–191.
13.Feil, S., Newell, J., Minogue, C., Paessler, H.H. (2011). The effectiveness of supplementing a standard rehabilitation program with superimposed neuromuscular electrical stimulation after anterior cruciate ligament reconstruction: a prospective, randomized, single-blind study. Am J Sports Med, 39 (6), 1238–1247. DOI: 10.1177/0363546510396180.
14.Gobbo, M., Maffiuletti, N.A., Orizio, C., Minetto, M.A. (2014). Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. Journal of Neuroengineering and Rehabilitation, 11 (17), 1–6. DOI: 10.1186/1743-0003-11-17.
15.Gondin, J., Cozzone, P.J., Bendahan, D. (2011). Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes? Eur J Appl Physiol, 111 (10), 2473–2487. DOI: 10.1007/ s00421-011-2101-2.
16.Gorgey, A.S., Dudley, G.A. (2008). The role of pulse duration and stimulation duration in maximizing the normalized torque during neuromuscular electrical stimulation. J Orthop Sports Phys Ther, 38 (8), 508–516. DOI: 10.2519/jospt.2008.2734.
17.Gorgey, A.S., Mahoney, E., Kendall, T., Dudley, G.A. (2006). Effects of neuromuscular electrical stimulation parameters on specific tension. Eur J Appl Physiol, 97 (6), 737–744. DOI: 10.1007/s00421-006-0232-7.
18.Holcomb, W.R. (1997). A practical guide to electrical therapy. Journal of Sport Rehabilitation, 6 (3), 272–282.
19.Holcomb, W.R., Golestani, S., Hill, S. (2000). A comparison of knee-extension torque production with biphasic versus russian current. Journal of Sport Rehabilitation, 9, 229–239.
20.Holcomb, W.R., Rubley, M.D., Girouard, T.J. (2007). Effect of the Simultaneous Application of NMES and HVPC on Knee Extension Torque. Journal of Sport Rehabilitation, 16, 307–318.
21.Holcomb, W.R., Rubley, M.D., Miller, M.G., Girouard, T.J. (2006). The effect of rest intervals on knee-extension torque production with neuromuscular electrical stimulation. Journal of Sport Rehabilitation, 15 (2), 116–124.
22.Holcomb, W.R., Rubley, M.D., Randolph, S.M. (2011). Increasing Neuromuscular Electrical Stimulation Amplitude to Reduce the Decline in Knee Extension Torque. Athletic Training & Sports Health Care, 3 (2), 63–68.
23.Hooker, D.N. (2003). Electrical Stimulating Currents. In: W.E. Prentice (ed.), Therapeutic Modalities for Sports Medicine and Athletic Training (5th ed., pp. 191–239). New York, NY: McGraw-Hill.
24.Lake, D.A. (1992). Neuromuscular electrical stimulation: an overview and its application in the treatment of sports injuries. Sports medicine, 13 (5), 320–336.
25.Laufer, Y., Elboim, M. (2008). Effect of burst frequency and duration of kilohertz-frequency alternating currents and of low-frequency pulsed currents on strength of contraciton, muscle fatigue, and percieved discomfort. Physical Therapy, 88 (10), 1167–1176.
26.Maffiuletti, N.A. (2010). Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol, 110(2), 223-234. doi: 10.1007/s00421-010-1502-y
27.Maffiuletti, N.A., Minetto, M.A., Farina, D., Bottinelli, R. (2011). Electrical stimulation for neuromuscular testing and training: state-of-the art and unresolved issues. Eur J Appl Physiol, 111 (10), 2391–2397. DOI: 10.1007/s00421-011-2133-7.
28.Maffiuletti, N.A., Morelli, A., Martin, A., Duclay, J., Billot, M., Jubeau, M., ..., Sartorio, A. (2011). Effect of gender and obesity on electrical current thresholds. Muscle & Nerve, 44 (2), 202–207.
29.Maffiuletti, N.A., Vivodtzev, I., Minetto, M.A., Place, N. (2014). A new paradigm of neuromuscular electrical stimulation for the quadriceps femoris muscle. Eur J Appl Physiol, 114 (6), 1197–1205. DOI: 10.1007/s00421-014-2849-2.
30.Morf, C., Wellauer, V., Casartelli, N.C., Maffiuletti, N.A. (2015). Acute effects of multipath electrical stimulation in patients with total knee arthroplasty. Arch Phys Med Rehabil, 96 (3), 498–504. DOI: 10.1016/j.apmr.2014.10.011.
31.Neurotech® (2012a). Kneehab® XP Quadriceps Therapy System. Hoboken, NJ: Bio-medical research Ltd.
32.Neurotech® (2012b). Quick start guide for clinicians. Hoboken, NJ: Biomedical Research Ltd.
33.Paessler, H.H. (2012). Emerging Techniques in Orthopedics: Advances in Neuromuscular Electrical Stimulation. American Journal of Orthopedics, 41 (5 Suppl.), 1–8.
34.Teepker, M., Peters, M., Vedder, H., Schepelmann, K., Lautenbacher, S. (2010). Menstrual variation in experimental pain: correlation with gonadal hormones. Neuropsychobiology, 61 (3), 131–140.
35.Walls, R.J., McHugh, G., O’Gorman, D.J., Moyna, N.M., O’Byrne, J.M. (2010). Effects of preoperative neuromuscular electrical stimulation on quadriceps strength and functional recovery in total knee arthroplasty. A pilot study. BMC Musculoskelet Disord, 11 (119), 1–9. DOI: 10.1186/1471-2474-11-119.