Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2021.3-04
CC BY-SA   Open Access   DOAJ  DOAJ

Lista wydań / Vol. 35, No. 3/2021
Normal Levels of TSH Affect the Metabolic Profile Differently in Physically Active Males and Females

Autorzy: Marzena Malara ORCID
Department of Human Biology, Józef Piłsudski University of Physical Education, Warsaw, Poland

Anna Kęska ORCID
Department of Human Biology, Józef Piłsudski University of Physical Education, Warsaw, Poland

Joanna Tkaczyk ORCID
Department of Human Biology, Józef Piłsudski University of Physical Education, Warsaw, Poland

Grażyna Lutosławska
Department of Human Biology, Józef Piłsudski University of Physical Education, Warsaw, Poland
Słowa kluczowe: normal range TSH glucose insulin HOMA-IR lipoproteins
Data publikacji całości:2021
Liczba stron:8 (41-48)
Cited-by (Crossref) ?:

Abstrakt

Our study was aimed at the evaluation of relationships between thyroid stimulating hormone (TSH) within the normal range and metabolic risk factors (glucose, insulin, HOMA-IR and lipoprotein profile) in physically active male and female students. In 219 students circulating TSH, glucose, insulin and lipoproteins were measured in blood under fasting conditions. Insulin resistance was expressed as HOMA-IR (homeostasis model assessment for insulin resistance). For further procedures 99 males and 97 regularly menstruating females with TSH 0.4–4.0 μIU/ml were accepted. In male students no correlations between circulating TSH, anthropometric and biochemical variables were noted. In females TSH within the normal range was slightly but significantly correlated with the triglyceride (TG) level (p < 0.03). However, step-wise multiple regression analysis revealed that the effect of TSH was small (p < 0.046) in relation to that found for HOMA-IR ( p < 0.0009). No relationships between biochemical variables and normal levels of TSH were noted in male students. However, surprisingly normal range TSH in males was slightly but significantly correlated with the percentage of body fat and this issue needs further studies concerning measurements of different fat depots. The above data suggests that in active females TG synthesis and export from the liver is more sensitive to TSH action than in active male counterparts.
Pobierz plik

Plik artykułu

Bibliografia

1.Asvold, B.O., Vatten, L.J., Nilsen, T.I., Bjøro, T. (2007). The association between TSH within the reference range and serum lipid concentrations in a population-based study. The HUNT Study. European Journal of Endocrinology, 156 (2), 181–186. DOI: 10.1530/eje.1.02333.
2.Belen, E., Değirmencioğlu, A., Zencirci, E., Tipi, F.F., Altun, Ö., Karakuş, G., Ayşen Helvacı, A., Zencirci, A.E., Kalaycıoğlu, E. (2015). The association between subclinical hypothyroidism and epicardial adipose tissue thickness. Korean Circulation Journal, 45, 210–215. DOI: 10.4070/kcj.2015.45.3.210.
3.Beyleroglu, M. (2011). The effects of maximal aerobic exercise on cortisol and thyroid hormones in male field hockey players. African Journal of Pharmacy an Pharmacology, 5 (17), 2002–2006. DOI: 10.5897/AJPP11.229.
4.Boullart, A.C., de Graaf, J., Stalenhoef, A.F. (2012). Serum triglycerides and risk of cardiovascular disease. Biochimica et Biophysica Acta, 1821 (5), 867–785. DOI: 10.1016/j.bbalip.2011.10.002.
5.Budoff, M. (2016). Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. American Journal of Cardiology, 118 (1), 138–145. DOI: 10.1016/j.amjcard.2016.04.004.
6.Ceresini, G., Marina, M., Lauretani, F., Maggio, M., Serra, M.F., Meschi, T., Bandinelli, S., Ceda, G.P., Ferrucci, L. (2019). Physical performance across the thyroid function values within the normal range in adult and older persons. Aging Clinical and Experimental Research, 31 (3), 385–391. DOI: 10.1007/s40520-018-0975-0.
7.Chen, Y., Chen, Y., Wang, N., Chen, C., Nie, X., Li, Q., Han, B., Lu, Y. (2018). Thyroid stimulating hormone within the reference range is associated with visceral adiposity index and lipid accumulation product: A population-based study of SPECT-China. Hormone and Metabolic Research, 50 (1), 29–36. DOI: 10.1055/s-0043-122235.
8.Ciloglu, F., Peker, I., Pehlivan, A., Karacabey, K., Ilhan, N., Saygin, O., Ozmerdivenli, R. (2005). Exercise intensity and its effects on thyroid hormones. Neuroendocrinology Letters, 26 (6), 830–834.
9.Dasharathy, S.S., Mumford, S.L., Pollack, A.Z., Perkins, N.J., Mattison, D.R., Wactawski-Wende, J., Schisterman, E.F. (2012). Menstrual bleeding patterns among regularly menstruating women. American Journal of Epidemiology, 175 (6), 36–545. DOI: 10.1093/aje/ kwr356.
10.de Souza, H.S., Jardim, T.V., Barroso, W.K.S., de Oliveira Vitorino, P.V., Souza, A.L.L., Jardim, P.C.V. (2019). Hormonal assessment of participants in a long distance walk. Diabetology & Metabolic Syndrome, 11, 19. DOI: 10.1186/s13098-019-0414-1.
11.Duntas, L.H., Brenta, G. (2018). A renewed focus on the association between thyroid hormones and lipid metabolism. Frontiers in Endocrinology, 9, 511. DOI: 10.3389/fendo.2018.00511.
12.Durnin, J.V., Womersley, J. (1974). Body fat assessment from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journal of Nutrition, 32 (1), 77–97. DOI: DOI: 10.1079/BJN19740060.
13.Ehrenkranz, J., Bach, P.R., Snow, G.L., Schneider, A., Lee, J.L., Ilstrup, S., Bennett, S.T., Benvenga, S. (2015). Circadian and circannual rhythms in thyroid hormones: determining the TSH and free T4 reference intervals based upon time of day, age, and sex. Thyroid, 25 (8), 954–961. DOI: 10.1089/thy.2014.0589.
14.Friedewald, W.T., Levy, R., Fredricson, D. (1972). Estimations of low-density lipoprotein concentrations without use the preparative ultra-centrifugation. Clinical Chemistry, 18 (6), 499–504. DOI: 10.1093/clinchem/18.6.499.
15.Hawamdeh, Z., Baniata, A., Mansi, K., Nasr, H., Aburjai, T. (2012).Thyroid hormones levels in Jordanian athletes participating in aerobic and anaerobic activities. Scientific research and essays, 7 (19), 1840–1845. DOI: 10.5897/SRE11.1735
16.Healy, M.L., Gibney, J., Pentecost, C., Wheeler, M.J., Sonksen, P.H. (2014). Endocrine profiles in 693 elite athletes in the postcompetition setting. Clinical Endocrinology, 81 (2), 294–305. DOI: 10.1111/cen.12445.
17.Huang, W.S., Yu, M.D., Lee, M.S., Cheng, C.Y., Yang, S.P., Chin, H.M., Wu, S.Y. (2004). Effect of treadmill exercise on circulating thyroid hormone measurements. Medical Principles and Practice,13 (1), 15–19. DOI: 10.1159/000074045.
18.Joseph, N., Chettuvatti, K., Yadav, H., Bharadwaj, H., Kotian, S.M. (2017). Assessment of risk of metabolic syndrome and cardio vascular diseases among medical students in India. Journal of Cardiovascular Disease Research, 8 (3), 89–95.
19.Korkmaz, L., Sahin, S., Akyuz, A.R., Ziyrek, M., Anaforoglu, I., Kose, M., Erkan, H., Ağaç, M.T., Acar, Z. (2013). Epicardial adipose tissue increased in patients with newly diagnosed subclinical hypothyroidism. Medical Principles and Practice, 22 (1), 42–46. DOI: 10.1159/000340065.
20.Lee, J., Ha, J., Jo, K., Lim, D.J., Lee, J.M., Chang, S.A., Kang, S.I., King, M.H. (2019). High normal range of free thyroxine is associated with decreased triglycerides and with increased high-density lipoprotein cholesterol based on population representative data. Journal of Clinical Medicine, 8 (6), 758. DOI: 10.3390/jcm8060758.
21.Lo Sasso, B., Vidali, M., Scazzone, C., Agnello, L., Ciaccio, M. (2019). Reference interval by the indirect approach of serum thyrotropin (TSH) in a Mediterranean adult population and the association with age and gender. Clinical Chemistry and Laboratory Medicine, 57 (10), 1587–1594. DOI: 10.1515/cclm-2018-0957.
22.Marugo, M., Torre, G., Bernasconi, D., Fazzuoli, L., Cassulo, S., Giordano, G. (1991). Androgen receptors in normal and pathological thyroids. Journal of Endocrinological Investigation, 14, 31–35. DOI: 10.1007/BF03350254.
23.Matthews, D.R., Hosker, J.P., Rudnsky, A.S., Naylor, B.A., Treacher, D.F., Turner, R.C. (1985). Homeostasis model assessment insulin resistance and bet-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28 (7), 413–419. DOI: 10.1007/BF00280883.
24.Pearce, S.H., Brabant, G., Duntas, L.H., Monzani, F., Peeters, R.P., Razvi, S., Wemeau, J.L. (2013). ETA Guideline: Management of subclinical hypothyroidism. European Thyroid Journal, 2 (4), 215–228. DOI: 10.1159/000356507.
25.Pramfalk, C., Pavlides, M., Banerjee, R., McNeil, C.A., Neubauer, S., Karpe, F., Hodson, L. (2016). Fasting plasma insulin concentrations are associated with changes in hepatic fatty acid synthesis and partitioning prior to changes in liver fat content in healthy adults. Diabetes, 65 (7), 1858–1867. DOI: 10.2337/db16-0236.
26.Rahbar, A.R., Kalantarhormozi, M., Izadi, F., Arkia, E., Rashidi, M., Pourbehi, F., Daneshifard, F., Rahbar, A. (2017). Relationship between Body Mass Index, Waist-to-Hip Ratio, and serum lipid concentrations and Thyroid-Stimulating Hormone in the euthyroid adult population. Iranian Journal of Medical Sciences, 42 (3), 301–305.
27.Sayin, I., Erkan, A.F., Ekici, B., Kutuk, U., Corakci, A., Tore, H.F. (2016). Thickening of the epicardial adipose tissue can be alleviated by thyroid hormone replacement therapy in patients with subclinical hypothyroidism. Kardiologia Polska, 74 (12), 1492–1498. DOI: 10.5603/KP.a2016.0053.
28.Schaefer, C.J., Geelhoed, G.W., Dadu, P. (1986). Thyroid disorders and steroid receptor proteins. he American Surgeon, 52 (9), 514–518.
29.Scherer, T., Lindtner, C., O’Hare, J., Hackl, M., Zielinski, E., Freudenthaler, A., Baumgartner-Parzer, S., Tödter, K., Heeren, J., Krššák, M., Scheja, L., Fürnsinn, C., Buettner, C. (2016). Insulin regulates hepatic triglyceride secretion and lipid content via signaling in the brain. Diabetes, 65 (6), 1511–1520. DOI: 10.2337/db15-1552.
30.Sinha, R.A., Singh, B.K., Yen, P.M. (2018). Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews Endocrinology, 14 (5), 259–269. DOI: 10.1038/nrendo.2018.10.
31.Tognini, S., Polini, A., Pasqualetti, G., Ursino, S., Caraccio, N., Ferdeghini, M., Monzani, F. (2012). Age and gender substantially influence the relationship between thyroid status and the lipoprotein profile: results from a large cross-sectional study. Thyroid, 22 (11), 1096–1103. DOI: 10.1089/thy.2012.0013.
32.Wang, D.C., Li, D.D., Guo, X.Z., Yu, S.L., Qiu, L., Cheng, X.Q., Xu, T., Li, H., Liu, H. (2018). Effects of sex, age, sampling time, and season on thyroid-stimulating hormone concentrations: a retrospective study. Biochemical and Biophysical Research Communications, 506 (3), 450–454. DOI: 10.1016/j.bbrc.2018.10.099.