Acta Biologica

Wcześniej: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Acta Biologica

ISSN: 2450-8330     eISSN: 2353-3013    OAI    DOI: 10.18276/ab.2019.26-04
CC BY-SA   Open Access   DOAJ

Lista wydań / No. 26
Biofilm and Quorum Sensing in Archaea
(Biofilm i zjawisko “quorum sensing” u Archaea)

Autorzy: Małgorzata Pawlikowska-Warych
Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland

Beata Tokarz-Deptuła
Department of Immunology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland

Paulina Czupryńska
Department of Microbiology, Faculty of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland

Wiesław Deptuła
Nicolaus Copernicus University in Toruń, Faculty of Biological and Veterinary Sciences, Institute of Veterinary Medicine, Gagarina 7, 87-100 Toruń, Poland
Słowa kluczowe: Archea biofilm środowisko quorum sensing
Data publikacji całości:2019
Liczba stron:10 (35-44)
Cited-by (Crossref) ?:

Abstrakt

W artykule przedstawiamy opis Archaea, z uwzględnieniem ich budowy, fizjologii i systema- tyki. Na podstawie piśmiennictwa przybliżamy mechanizm tworzenia biofilmu wraz z poza-komórkowymi substancjami polimerowymi, a także typowe tylko dla archeonów organelle komórkowe, takie jak archaella, pili i „hami”. Metoda tworzenia biofilmu zależy od rodzaju Archaea i środowiska, w którym naturalnie żyje. Przybliżamy również zjawisko quorum--sensing, jako mechanizm komunikacji Archaea w środowisku. Za zjawisko to odpowiadają cząsteczki chemiczne podobne do tych u bakterii, a mianowicie acylowany lakton homoseryny, peptyd QS, autoinduktor-2 i -3 oraz inne. Opisywane zjawiska, zarówno tworzenie biofilmu jak i quorum-sensing są istotne dla życia archeonów. Opisane zjawiska wydają się konserwatywne, ponieważ zarówno u archeonów, jak i bakterii są regulowane przez te same mechanizmy.
Pobierz plik

Plik artykułu

Bibliografia

1.Abed, R.M.M., Dobretsov, S., Al-Fori, M., Gunaskera, S.P., Sudesh, K., Paul, V.J. (2013). Quorum-
2.sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline
3.cyanobacte-rial mat. J. Indust. Microbiol. Biotechnol., 40, 759–772.
4.Abisado, R.G., Benomar, S., Klaus, J.R., Dandekar, A.A., Chandler, J.R. (2018). Bacterial quorum-
5.sensing and microbial community interactions. mBio, 9, e02331-17.
6.Ajon, M., Fröls, S., van Wolferen, M., Stoecker, K., Teichmann, D., Driessen, A.J.M., Grogan, D.W.,
7.Albers, S.-J., Schleper, C. (2011). UV-inducible DNA exchange in hyperthermophilic archaea
8.mediated by type IV pili. Mol. Microbiol., 82, 807–817.
9.Auernik, K., Maezato, Y., Blum, P., Kelly, M. (2008). The genome sequence of the metal-mobilizing,
10.extre-maly thermoacidophilic archeon Metallosphaera sedula provides insights into bioleaching-
11.asociated metabolism. Appl. Environ. Microbiol., 74, 682–692.
12.Baker-Austin, C., Potrykus, J., Wexler, M., Bond, P., Dopson, M. (2010). Biofilm development in the
13.extre-maly acidophilic archaeon Ferroplasma acidarmanus Fer1. Extremophiles, 14, 485–491.
14.Bapteste, E., Brochier, C., Boucher, Y. (2005). Higher-level classification of the Archaea: evolution of
15.methanogenesis and methanogens. Archaea, 1, 353–363.
16.Bardy, S., Jarrel, K. (2003). Cleavage of preflagellins by an aspartic acid signal peptidase is essential for
17.flagellation in the archeon Methanococcus voltae. Mol. Microbiol., 50, 1339–1347.
18.Barriuso, J., Martinez, M.J. (2018). In silico analysis of the quorum-sensing metagenome in
19.environmental biofilm samples. Front. Microbiol.
20.Bassler, B. (2002). Small talk: cell-to-cell communication in bacteria. Cell, 109, 421–424.
21.Bird, J.T., Baker, B.J., Probst, A.J., Podar, M., Lloyd, K.G. (2016). Culture independent genomic com-
22.parisons reveal environmental adaptations for Altiarchaeales. Front. Microbiol. DOI: 10.3389/fmicb.2016.01221.
23.Boom, D.R., Castenholz, R.W. (eds.) (2001). Bergey’s Manual of Systematic Bacteriology. Vol. 1: The
24.Archaea and the deeply branching and phototrophic Bacteria. New York: Springer.
25.Caderon, K., Gonzalez-Martinez, A., Gomez-Silvan, C., Osorio, F., Rodelas, B., Gonzalez-Lopez, J.
26.(2013). Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent
27.advances and future prospects. Int. J. Mol. Sci., 14, 18572–18598.
28.Chudy, D., Jabłoński, S., Łukaszewicz, M. (2011). Determining the dynamics formation of biofilm
29.deposits by microorganisms methanogenic fluorescence microscopy and dark field using image analysis.
30.Acta Sci. Pol. – Biotechnologia, 10, 17–28.
31.DeLong, E. (1998). Everything in moderation: Archaea as ‘non-extremophiles’. Curr. Opin. Gen.
32.Develop., 6, 649–654.
33.Dridi, B., Didier, R., Drancourt, M. (2011). Archaea as emerging organisms in complex human microbi-
34.omes. Anaerobe, 17, 56–63.
35.Efenberger, M., Brzezińska-Błaszczyk, E., Wódz, K. (2014). Archaeons – still unknown microorganisms
36.(in Polish). Post. Hig. Med. Dośw., 68, 1452–1463.
37.Fernandez, N., Diaz, E., Amilis, R., Sanz, J. (2008). Analysis of microbial community durning biofilm
38.development in anerobic westwater treatment reactor. Microbiol. Ecol., 56, 121–131.
39.Flemming, H., Wingender, J. (2010). The biofilm matrix. Nature Rev. Microbiol., 8, 623–633.
40.Foesel, B., Gieseke, A., Schwermer, C., Stief, P., Koch, L., Cytryn, E., de la Torre, J., van Rijn, J., Minz,
41.D.,Drake, H., Schramm, A. (2008). Nitrosomonas Nm143-like ammonium oxidizers and Nitrospira
42.marina-like nitrate oxidizers dominate the nitrifier community in a marine aquaculture biofilm. FEMS
43.Microbiol. Ecol., 63, 192–204.
44.Forterre, P., Brochier, C., Philippe, H. (2002). Evolution of the Archaea. Theoret. Pop. Biol., 61, 409–422. Fröls, S., Dyall-Smith, M., Pfeifer, F. (2012). Biofilm formation by haloarchaea. Environ. Microbiol., 14,
45.3459–3174.
46.Fröls, S. (2013). Archaeal biofilms: widespread and complex. Bioch. Soc. Trans., 41, 393–398.
47.Hennenberger, R., Moissl, C., Amann, T., Rudolph, C., Huber, R. (2006). New insights into the lifestyle of
48.the cold-loving SM1 Euryarchaeon: natural growth as monospecies biofilm in the subsurface. Appl.
49.Environ. Microbiol., 72, 192–199.
50.Hiblot, J., Gotthard, G., Champion, C., Chabriere, E., Elias, M. (2013). Crystallization and preliminary
51.X-ray diffraction analysis of the lactonase VmoLac from Vulcanisaeta moutnovskia. Acta Cryst., F, 69,
52.1235–1238.
53.Hiblot, J., Bzdrenga, J., Champion, C., Chabriere, E., Elias, M. (2015). Crystal structure of VmoLac, a
54.tentative quorum quenching lactonase from the extremophilic cranarchaeon Vulcanisaeta moutnovskia.
55.Sci. Rep. DOI: 10.1038/srep08372.
56.Horn, C., Paulmann, B., Kerlen, G., Junker, N., Huber, H. (1991). In vivo observation of cell division of
57.anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J. Bacteriol., 181,
58.5114–5118.
59.Huber, H., Hohn, M., Stetter, K., Rachel, R. (2003). The phylum Nanoarchaeota: present knowledge and
60.future perspective of a unique form of life. Res. Microbiol., 154, 165–171.
61.Huynh, H., Verneau, J., Levasseur, A., Drancourt, M., Aboudharam, G. (2015). Bacteria and archaea
62.paleo-microbiology of the dental calculus: a review. Mol. Oral Microbiol. DOI: 10.1111/omi.12118.
63.Jachlewski, S., Jachlewski, W., Linne, U., Brasen, C., Wingender, J., Siebers, B. (2015). Isolation of
64.extracellular polymeric substances from biofilms of the thermoacidophilic archaeon Sulfolobus acido-
65.caldarius. Front. Bioeng. Biotechnol. DOI: 10.3389/fbioe.2015.00123.
66.Jaworski, A., Serwecińska, L., Stączek, P. (2005). Quorum sensing – communication cells in the
67.bacterial population with the participation of chemical signaling molecules (in Polish). Post. Biol. Kom.,
68.32, 231–256.
69.Kaur, A., Capalash, N., Sharma, P. (2018). Quorum sensing in thermophiles: prevelance of autoinducer-2
70.system. BMC Microbiol. DOI: 10.1186/s12866-018-1204-x.
71.Koch, M., Rudolph, C., Moissl, C., Huber, R. (2006). A cold-loving crenarchaeon is a substantial part of a
72.novel microbial community in cold sulphidic marsh water. FEMS Microbiol. Ecol., 57, 55–66.
73.Koerdt, A., Godake, J., Berger, J., Thormann, K., Albers, S. (2010). Cranarchaeal biofilm formation under
74.extreme conditions. PLoS ONE. DOI: 10.1371/journal.pone.0014104.
75.Koerdt, A., Jachlewski, S., Ghosh, A., Wingender, J., Siebers, B., Albers, S. (2012). Complementation of
76.Sulfolobus soplfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm
77.formation. Extremophiles, 16, 115–125.
78.Koerdt, A., Orell, A., Pham, T.K., Mukherjee, J., Wlodkowski, A., Karunakaran, E., Biggs, C.A., Wright,
79.P.C., Albers, S.-V. (2011). Macromolecular fingerprinting of Sulfolobus species in biofilm: a tran-
80.scriptomic and proteomic approach combined with spectroscopic analysis. J. Proteome Res., 10,
81.4105–4119.
82.Lapaglia, C., Hartzell, P. (1997). Stress-induced production of biofilm in the hypothermophile Archaeoglo-
83.bus fulgidus. Appl. Environ. Microbiol., 63, 3158–3163.
84.Lassak, K., Neiner, T., Ghosh, A., Klingl, A., Wirth, R., Albers, S. (2012). Molecular analysis of crenar-
85.chaeal flagellum. Mol. Microbiol., 83, 110–124.
86.Li, L., Zheng, M., Ma, H., Gong, S., Ai, G., Liu, X., Li, J., Wang, K., Dong, X. (2015). Significant
87.performance enhancement of a UASB reactor by using acyl homoserine lactones to facilitate the long
88.filaments of Methanosaeta harundinacea 6Ac. Appl. Microbiol. Biotechnol., 99, 6471–6480.
89.Matarazzo, F., Ribeiro, A., Faveri, M., Taddei, C., Martinez, M., Mayer, M. (2012). The domain Archaea in
90.human muscosal surfaces. Clin. Microbiol. Infect., 18, 834–840.
91.Mayerhofer, L., Macario, A., Conway de Macario, E. (1992). Lamina, a novel multicellular form of Metha-
92.nosarcina mazei S-6. J. Bacteriol., 174, 309–314.
93.Megaw, J., Gilmore, B.F. (2017). Archaeal persisters: persister cell formation as a stress response in
94.Haloferax volcanii. Front Microbiol.
95.Moissl, C., Rachel, R., Briegel, A., Engelhardt, H., Huber, R. (2005). The unique structure of archeal
96.‘hami’, highly comlex cell appendages with nano-grappling hooks. Mol. Microbiol., 56, 361–370.
97.Montgomery, K., Charlesworth, J., LeBard, R., Visscher, P., Burns, B. (2013). Quorum sensing in
98.extreme environments. Life, 3, 131–148.
99.Myszka, K., Czaczak, K. (2010). Quorum sensing mechanism as a factor regulating virulence of
100.Gramnegative bacteria (in Polish). Post. Hig. Med. Dośw., 64, 582–589.
101.Ng, S., Zolghadr, B., Driessen, A., Albers, S., Jarrell, K. (2008). Cell surface structures of Archaea. J.
102.Bac-teriol., 190, 6039–6047.
103.Nichols, J.D., Johnson, M.R., Chou, C.-J., Kelly, R.M. (2009). Temperature, not LuxS, mediates AI-2
104.formation in hydrothermal habitats. FEMS Microbial Ecol., 68, 173–181.
105.Nickell, S., Hegerl, R., Baumeister, W., Rachel, R. (2003). Pyrodictium cannulae enter the periplasmic
106.space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol., 141,
107.34–42.
108.Niederberger, T., Götze, D., McDonald, I., Ronimus, R., Morgan, H. (2006). Ignisphaera aggregans gen.
109.nov., a novel hyperthermophilic crenarchaeote isolated from hot springs in Rotorua and Tokaanu, New
110.Zealand. Int. J. Syst. Evol. Microbiol., 56, 965–971.
111.Ozuolmez, D., Nea, H., Lever, M., Kjedsen, K., Jørgensen, B., Plugge, C. (2015). Methanogenic archaea
112.and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front Microbiol. DOI: 10.3389/fmicb.2015.00492.
113.Paggi, R.A., Madrid, E.A., D’Alessamdro, C.P., Cerletti, M., De Castro, R.E. (2010). Growth phase-
114.dependent biosynthesis of Nep, a halolysin-like protease secreted by the alkaliphilic haloarchaeon Natri-
115.alba magadii. Lett. Appl. Microbiol., 51, 36–41.
116.Paggi, R.A., Martone, C., Fuqua, C., De Castro, R. (2003). Detection of quorum sensing signals in the
117.halo-alkaliphilic archaeon Natronococcus occultus. FEMS Microbiol. Lett., 221, 49–52.
118.Pohlschröder, M., Esquivel, R. (2015). Archaeal type IV pilli and their involvement in biofilm formation.
119.Front Microbiol. DOI: 10.3389/fmicb.2015.00190.
120.Probst, A., Auerbach, A., Moissl-Eichinger, C. (2013). Archaea on human skin. PLoS ONE. DOI:
121.10.1371/ journal.pone.0065388.
122.Rajput, A., Gupta, A.K., Kumar, M. (2015). Prediction and analysis of quorum sensing peptides based on
123.sequence features. PLoS ONE. DOI: 10.1371/journal.pone.0120066.
124.Rajput, A., Kaur, K., Kumar, M. (2016). SigMol: repertoire of quorum sensing signaling molecules in pro-
125.karyotes. Nucleic Acids Res. DOI: 10.1093/nar/gkv1076.
126.Raskin, L., Rittmann, B., Stahl, D. (1996). Competition and coexistence of sulfate-reducing and methano-
127.genic populations in anaerobic biofilms. Appl. Environ. Microbiol., 62, 3847–3857.
128.Rinker, K., Kelly, R. (1996). Growth physiology of the hyperthermophilic archeon Thermococcus litoralis:
129.development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of
130.biofilm formation. Appl. Environ. Microbiol., 62, 4478–4485.
131.Schopf, S., Wanner, G., Rachel, R., Wirth, R. (2008). An archaeal bi-spacies biofilm formed by
132.Pyrococcus furious and Methanopyrus kandlerii. Arch. Microbiol., 190, 371–377.
133.Schrenk, M., Kelley, D., Delaney, J., Baross, J. (2003). Incidence and diversity of microorganisms within
134.the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol., 69, 3580–3592.
135.Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck, E., Streit, W., Stahl,
136.D., Wagner, M., Schleper, C. (2010). Distinct gene set in two different lineages of ammonia-oxidizing
137.archaea supports the phylum Thaumarchaeota. Trends Microbiol., 8, 331–334.
138.Staley, J.T., Caetano-Anolles, G. (2018). Archaea-first and the co-evolutionary diversification of domains
139.of life. BioEssays. DOI: 10.1002/bies.201800036.
140.Szabo, Z., Sani, M., Groeneveld, M., Zolghadr, B., Schelert, J., Alberts, S., Blum, P., Boekema, E.,
141.Driessen, A. (2007). Flagellar motility and structure in the hyperthermoacidophilic archeon Sulfolobus
142.solfate-ricus. J. Bacteriol., 189, 4305–4309.
143.Tommonaro, G., Abbamondi, G., Iodice, C., Tait, K., De Rosa, S. (2012). Diketopiperazines produced by
144.the halophilic archaeon, Haloterrigena hispanica, activate AHL bioreporters. Microbial Ecol., 63,
145.490–495.
146.Wang, Y., Yu, X., Ng, S., Jarrell, K., Egelman, E. (2008). The structure of an archaeal pilus. J. Mol. Biol.,
147.381, 456–466.
148.Woese, C., Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms.
149.PNAS, 74, 5088–5090.
150.Zhang, G., Zhang, F., Ding, G., Li, J., Guo, X., Zhu, J., Zhou, L., Cai, S., Liu, X., Luo, Y., Zhang, G., Shi,
151.W., Dong, X. (2012). Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon.
152.ISME Journal, 6, 1336–1344.
153.Zolghard, B., Klingl, A., Koerdt, A., Driessen, A., Rachel, R., Albers, S. (2010). Appendage-mediated surface adherence of Sulfolobus solftaricus. J. Bacteriol., 192, 104–110.