Przebieg procesów sensomotorycznych i funkcji bioelektrycznej układu wzrokowego pod wpływem zwiększania intensywności wysiłku fizycznego u młodych aktywnych ruchowo mężczyzn

ISBN: 978-83-7241-824-1    ISBN (online): 978-83-7972-824-4    ISSN: 0860-2751    OAI    DOI: 10.18276/978-83-7972-824-4
CC BY-SA   Open Access 

Issue archive / T. (DCCLXXIII) 799

Year:2011
Field:Field of Medical and Health Sciences
Discipline:physical culture sciences
Authors: Teresa Zwierko ORCID
Uniwersytet Szczeciński

Information

Date of release of digital version under CC-BY-SA license: August 2024

Download issue

Issue File

Abstract

THE EFFECT OF INCREASED PHYSICAL EFFORT ON VISUOMOTOR PROCESSING AND THE BIOELECTRICAL FUNCTION OF THE VISUAL SYSTEM IN PHYSICALLY ACTIVE YOUNG MEN

Sensorimotor processing depends on the functional status of the human body. Empirical and theoretical evidence indicate that information processing might be affected by the intensity of physical activity, complexity of task, selection of a research subjects and experimental procedures. Although there are a number of hypotheses concerning the effect of these factors on sensorimotor processing during exercise, the effect of progressively increased physical effort on visuomotor processing needs to be examined in more detail. On one hand, exercise has a beneficial effect on the excitation and activity of the central nervous system, but on the other, intense physical activity may interfere with neural signal transmission. Therefore, it is important to investigate visuomotor processing during activities with varying physical load and to determine the effect of exercise on consecutive stages of visual information processing. In particular, it is important to determine the neurophysiological correlates of early stages of visual information processing during exercise.

The main objective of this study was to investigate the impact of progressively increased physical effort on visuomotor processing in physically active young men by measuring the latency and accuracy of (motor) reactions to visual stimuli appearing in the central and peripheral vision, and recording the bioelectric response of cells in visual system during the transmission of neural signals. The intensity of physical effort was manipulated using individual load (W) at (1) 40% VO2max (below lactate threshold), (2) 60% VO2max (range of the lactate threshold) and (3) 80% VO2max (above lactate threshold).

Study Objectives:

1. To determine the effect of increased physical effort on latency and accuracy of motor reaction to visual stimuli appearing in the central and peripheral vision in tasks with varying complexity.

2. To determine the effect of increased physical effort on the bioelectric function of the retinal and postretinal visual pathway.

3. To determine the relationship between parameters describing the bioelectric function of visual system and parameters describing changes in the components of motor reaction to visual stimuli appearing in the central and peripheral visual field after progressively increased physical effort.

Study Hypotheses:

H-1. Progressively increased physical effort will affect the accuracy and latency of visuomotor processing. The direction and size of these changes will depend on the intensity of the physical effort. Specifically, as the intensity of physical effort increases the latency of motor response to visual stimuli will be reduced until a critical value of exercise intensity is reached, which will be followed by a significant prolongation of the motor response.

H-2. The accuracy and latency of visuomotor processing after exercise with increasing intensity will depend on the level of complexity of the task. Motor performance will be less accurate and slower when the complexity of the task is higher after exercise with increased intensity of physical effort

H-3. Physical effort will affect the early sensory stage of visual information processing, as measured by changes in the bioelectric function of the retina and postretinal visual pathway.

H-4. There will be a positive relationship between (i) changes in bioelectric response of the retina and postretinal visual pathway and (ii) changes in the course of visuomotor processing after exercise. These relationships will shed light on the nature of the interactions between the functional alterations of neuronal functions in the visual system and the effectiveness of the visuomotor processing after exercise with increasing intensity

Methodology

Subjects. Thirty eight physical education students (experimental group) who were not professional sportsmen (men aged 21.39 ± 1.2 years) were recruited from the Institute of Physical Culture at the University of Szczecin. All subjects participating in the experiment had intact basic functions of the eye, confirmed by routine eye examinations. In addition, three experiments of the study involved a control group of 15 people, selected according to the same criteria as for the experimental group.

Procedure. Subjects completed one effort test with incremental intensity using a cycloergometer (Monark E834, Varberg, Sweden), The experiment began with a 10 min rest in a reclining position, after which time blood was collected from a finger for biochemical determinations. Subjects completed a 5-min warm up at 25 watt (W). The effort- test commenced at 70 W, with 70 revolutions per min (rpm). The exercise continued with an increasing workload (20 W increments every 3 min) until refusal. During the last 15 sec of each 3-min effort at a given workload, capillary blood samples were drawn from a fingertip for the enzymatic determination of blood lactate concentration (Dr Lange Cuvette Test LKM 140, Germany) using miniphotometer LP 20 Plus (Dr Lange, Germany). Resting heart rate and its change during exercise was measured using a Polar S610 heartrate monitor (Polar, Finland. Oxygen consumption during exercise was estimated using an Oxycon gas analyzer (Jaeger, Germany). Individual lactate threshold was calculated using a linear regression graph log LA and the log of effort intensity. Based on the results of the exercise test, each subject was assigned an individual workload value (W) at (1) 40% VO2max – load value below the lactate threshold, (2) lactate threshold, which in the case of the experimental group was on average approximately 60% of VO2max ( x % VO2max = 60.79) and (3) 80% VO2max (above lactate threshold).

Dependent Variables. The latency and accuracy of visuomotor processing were measured using the Vienna Test System 29.1 (Schuhfried, Austria). The following parameters were measured: simple motor reaction to stimuli appearing in the central visual field (S1 version), differential motor reaction to stimuli that appear in central visual field (S4 version) and differential motor reaction to stimuli that appear in peripheral visual field (peripheral perception test).

Bioelectrical function of the visual system was evaluated using clinical examinations established in accordance with the current procedures of ISCEV international standards, i.e. protocol established by the International Society for Clinical Electrophysiology of Vision. An electoretinogram was used to evaluate retinal function (system UTAS-E 2000 LKC Technology, Gaithersburg, MD, USA). Retinal bioelectric function was estimated using a full-field flash electroretinogram ERG (LKC UTAS-E-2000 LKC Technology, Gaithersburg, MD, USA.). Visual evoked potentials (VEPs) recordings were recorded to measure the neural conductivity of the visual pathway. VEPs were recorded with a Reti Scan (Roland, Germany).

Three experiments were performed in order to evaluate the effect of exercise on the visuomotor processing. During the experiments tests were carried out to measure reaction times to stimuli appearing in the central and peripheral visual field. The order of the tasks was randomized. The first reaction test (T) recording was performed at rest (T0). A 5-min warm-up on the cycloergometer (max 25 W) with the individually established frequency of revolutions, preceded the first 10-min effort (W1) at an intensity below lactate threshold (40% VO2max, 68-72 rpm). Directly after the effort, reaction test recording was performed (T1). The participant then performed a 10-min effort (W2) at the lactate threshold intensity (60% VO2max, 68-72 rpm), followed by the next reaction test recording (T2). Subsequently, a 10 min exercise was performed (W3), at an intensity above the lactate threshold (80% VO2max, 68-72 rpm) after which the reaction test recording was made (T3). During the experiment, heart rate was monitored. In the control group, the examinations involved 4 reaction test recordings made in 10 min intervals without physical effort.

Two experiments were performed in order to estimate the retinal bioelectric function, (1) under scotopic conditions and (2) under fotopic conditions. In both experiments, monocular stimulation was performed using the right eye. The contact lens electrode was applied to the subject’s topically anaesthetised cornea and the first electoretinogram was recorded in resting conditions (ERG0). The subsequent three ERG recordings (ERG1, ERG2, ERG3) were made immediately after efforts with incremental intensities performed on a cycloergometer (W1, W2, W3). Similarly to the previous procedure, W1 was preceded by a 5 min warm-up (R) and the exercise on the cycloergometer during the consecutive 10 min efforts was performed at the established frequency of pedal revolutions (68–72 rpm). In the clinical experiment, also a fifth ERG examination was made (ERGk) in control conditions – 1 hour after the completion of the last exercise.

The purpose of the third clinical experiment was to analyze the effects of physical effort with increasing intensity on the visual evoked potentials (VEPs). By using pattern- reversal VEPs elicited by checkerboard stimuli with large and small checks, visual stimulation for right eye was applied. The procedure was conducted as in the ERG experiments.

Results and Conclusions
1. In a group of young and physically active men, progressively increased physical effort caused varied changes (in the direction and range) in the latency of visuomotor processing. Reaction time to visual stimuli decreased during exercise until a critical value of exercise intensity was reached. When the critical value of intensity was reached reaction time stabilized or increased. The critical value of exercise intensity depended on the complexity of the sensorimotor task: the higher the level of complexity, the higher exercise intensity at which the critical point occurred.
2. Changes in the accuracy of responses after progressively increased physical effort were related to the degree of complexity of the task. For tasks of lesser complexity, the accuracy of motor response was not affected by the intensity of exercise. In contrast, when performing tasks of greater complexity, the accuracy of visuomotor processing was enhanced by low-and-moderate intensity effort (40% and 60%VO2max) and accuracy was reduced by high intensity effort (80% VO2max).
3. Bioelectrical retinal cell response depended on the intensity of exercise. The increase in the intensity of exercise distorted the internal functions of retinal cell layers to a greater extent than retinal receptor functions. Consequently, retinal sensitivity to changes in bioelectric function was greater under scotopic conditions than under photopic conditions after increased physical effort.
4. Exercise with increasing intensity affected the course of bioelectrical neuronal activity in the postretinal visual pathway. Changes in the parameters of visual evoked potentials depended on exercise intensity and the type of pattern used in stimulation. Increased exercise intensity was accompanied by the impairment of bioelectrical function in the postretinal visual pathway, indicating the possibility of signal transmission delays caused by visual fatigue induced by exercise.
5. Concurrent and delayed relationship between the bioelectric function of the visual system and the effectiveness of visuomotor processing was observed under the conditions of progressively increased physical effort.

Bibliography

1.Abernethy B. (1987), Review: selective attention in fast ball sports. II: Expert-novice differences, Aust J Sci Med Sport, 19 (4), 7–16.
2.Adkins D.L., Boychuk J., Remple M.S., Kleim J.A. (2006), Motor training induces experience- specific patterns of plasticity across motor cortex and spinal cord, J Appl Physiol, 101 (6), 1776–1782.
3.Alexandridis E., Krastel H. (1997), Elektrodiagnostik in der Ophthalmologie, Springer, Berlin–Heidelberg–New York.
4.Allison T., Wood C.C., Goff W.R. (1983), Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, and brain and body size, Electroenceph Clin Neurophysiol, 55, 619–636.
5.Ando S., Kida N., Oda S. (2001), Central and peripheral visual reaction time of soccer players and nonathletes, Percept Mot Skills, 92, 786–794.
6.Ando S., Kimura T., Hamada T., Kokubu M., Moritani T., Oda S. (2005), Increase in reaction time for the peripheral visual field during exercise above the ventilatory threshold, Eur J Appl Physiol, 94 (4), 461–467.
7.Anzola G.P., Bertoloni G., Buchtel H.A., Rizzolatti G. (1977), Spatial compatibility and anatomical factors in simple and choice reaction time, Neuropsychologia, 15 (2), 295–302.
8.Arcelin R., Delignières D., Brisswalter J. (1998), Selective effects of physical exercise on choice reaction processes, Percept Mot Skills, 87, 175–185.
9.Arroyo S., Lessrer R.P., Poon W., Webber R.S., Gordon B. (1997), Neuronal generators of visual evoked potentials in humans, visual processing in the human cortex, Epilepsia, 38, 600–610.
10.Ashkenazi I., Melamed S., Blumenthal M. (1992), The effect of continuous strenuous exercise on intraocular pressure, Invest Ophthalmol Vis Sci, 33, 2874–2877.
11.Audiffren M. (2009), Acute exercise and psychological functions: a cognitive-energetic approach, w: Exercise and cognitive function, red. T. McMorris, P.D. Tomporowski, M. Audiffren, John Wiley & Sons, Ltd, 3–35.
12.Audiffren M., Tomporowski P.D., Zagrodnik J. (2008), Acute aerobic exercise and information processing: Energizing motor processes during a choice reaction time task, Acta Psychologia, 129, 410–419.
13.Bailey S.P., Davis J.M., Ahlborn E.N. (1993), Neuroendocrine and substrate responses to altered brain 5-HT activity during prolonged exercise to fatigue, J Appl Physiol, 74, 3006–3012.
14.Bartel P., Blom M., Robinson E., Van der Meyden C., Sommers D.K., Becker P. (1990), The effects of levodopa and haloperidol on flash and pattern ERGs and VEPs in normal humans, Doc Ophthalmol, 76, 55–64.
15.Basmak H., Yildirim N., Erdinc O., Yurdakul S., Ozdemir G. (1999), Effect of levodopa therapy on visual evoked potentials and visual acuity in amblyopia, Ophtalmologica, 213, 110–113.
16.Baylor A.M., Spirduso W.W. (1988), Systematic aerobic exercise and components of reaction time in older women, J Gerontol Psychol Sci, 43, 121–126.
17.Beaver W.L., Wasserman K., Whipp B.J. (1985), Improved detection of lactate threshold during exercise a log-log transformation, J Appl Physiol, 59, 1936–1940.
18.Benwell N.M., Mastaglia F.L., Thickbroom G.W. (2006), Reduced functional activation after fatiguing exercise is not confined to primary motor areas, Exp Brain Res, 175 (4), 575–583.
19.Biedert R.M. (2000), Contribution of the three levels of nervous system motor control: spinal cord, lower brain, celebral cortex, w: Proprioception and neuromuscular control in joint stability, red. M.L. Scott, H.F. Freddie, Human Kinetics, 23–29.
20.Birch K., MacLaren D., George K. (2005), Instant notes in sport and exercise physiology, Taylor & Francis.
21.Block F., Schwarz L., Sontag K.H. (1992), Retinal ischemia induced by occlusion of both common carotid arteries in rats as demonstrated by electroretinography, Neurosci Lett, 144, 124–126.
22.Bołoban W. (2009), Reaction time and motor time in an athlete’s movements, Pedagogics, Psychology, Medical-Biological Problems of Physical Training and Sports, 10, 295–301.
23.Bonmassar G., Schwartz D.P., Liu A.K., Kwong K.K., Dale A.M., Belliveau J.W. (2001), Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings, Neuroimage, 13, 1035–1043.
24.Botwinick J., Thompson L.W. (1966), Premotor and motor components of reaction time, J Exp Psychol, 71 (1), 9–15.
25.Bowmaker J.K., Dartnall H.J.A. (1980), Visual pigments of rods and cones in human retina, J Physiol, 289, 501–511.
26.Brinchmann-Hansen O., Myhre K., Sandvik L. (1989), Retinal vessel responses to exercise and hypoxia before and after high altitude acclimatisation, Eye, 3, 768–776.
27.Brisswalter J., Collardeau M., René A. (2002), Effects of acute physical exercise characteristics on cognitive performance, Sports Medicine, 32 (9), 555–566.
28.Brisswalter J., Durand M., Delignières D., Legros P. (1995), Optimal and non-optimal demand in a dual task of pedalling and simple reaction time: effects on energy expenditure and cognitive performance, J Hum Mov Studies, 29, 15–34.
29.Brunette J.R., Olivier P., Galeano C., Lafond G. (1983), Hyper-response and delay in the electroretinogram in acute ischemia, Can J Ophthalmol, 18, 188–193.
30.Carbonnell L., Hasbroucq T., Grapperon J., Vidal F. (2004), Response selection and motor areas: a behavioural and electrophysiological study, Clin Neurophysiol, 115, 2164–2174.
31.Carr R.E., Siegel I.M. (1990), Electrodiagostic testing of visual system: a clinical guide, F.A. Davis Company, Philadelphia.
32.Chmura J., Nazar K., Kaciuba-Uściłko H. (1994), Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds, Int J Sports Med, 15 (4), 172–176.
33.Chmura J., Nazar K., Kaciuba-Uściłko H. (2007), Próg psychomotoryczny zmęczenia, Sport Wyczynowy, 4–6, 27–35.
34.Chmura J. (2004), Szybkość działania zawodnika w piłce nożnej, Medycyna Sportowa, 8, Suplement 1, 75–96.
35.Chmura J., Krysztofiak H., Ziemba A.W., Nazar K., Kaciuba-Uściłko H. (1998), Psychomotor performance during prolonged exercise above and below the blood lactate threshold, Eur J Appl Physiol Occup Physiol, 77, 77–80.
36.Chmura J., Sobiech K., Słowińska M., Sroka E. (1991), Wpływ wysiłku wytrzymałościowo- -szybkościowego na przebieg zmian sprawności psychomotorycznej u koszykarzy, Wychowanie Fizyczne i Sport, 1, 109–117.
37.Chwalibińska-Moneta J., Krysztofiak F., Ziemba A., Nazar K., Kaciuba-Uściłko H. (1996), Threshold increases in plasma growth hormone in relation to plasma catecholamine and blood lactate concentrations during progressive exercise in endurance- trained athletes, Eur J Appl Physiol Occup Physiol, 73 (1–2), 117–120.
38.Cian C., Barraud P.A., Melin B., Raphel C. (2001), Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration, Int J Psychophysiol, 42, 243–251.
39.Cian C., Koulmannn N., Barraud P.A., Raphel C., Jimenez C., Melin B. (2000), Influences of variations in body hydration on cognitive function: Effects of hyperhydration, heat stress, and exercise-induced dehydration, J Psychophysiol, 14, 29–36.
40.Coleman K., Fitzgerald D., Eustace P., Bouchier-Hayes D. (1990), Electroretinography, retinal ischemia and carotid artery disease, Eur J Vasc Surg, 4, 13–18.
41.Coles M.G.H. (1989), Modern mind-brain reading: psychophysiology, physiology, and cognition, Psychophysiology, 26, 251–269.
42.Collardeau M., Brisswalter J., Audiffren M. (2001), Effects of a prolonged run on simple reaction time of well-trained runners, Percept Mot Skills, 93 (3), 679–689.
43.Côté J., Salmela J., Papathanasopoulu K.P. (1992), Effects of progressive exercise on attentional focus, Percept Mot Skills, 75, 351–354.
44.Covassin T., Weiss L., Powell J., Womack C. (2007), Effects of a maximal exercise test on neurocognitive function, Br J Sports Med, 41, 370–374.
45.Curran S., Wattis J. (2000), Critical flicker fusion threshold: a potentially useful measure for the early detection of Alzheimer’s disease, Hum Psychopharmacol Clin Exp, 15, 103–112.
46.Czepita D. (1990), Influence of α and β-adrenergic stimulators and blockers on the electroretinogram and visually evoked potentials of the rabbit, Biomed Biochim Acta, 49 (6), 509–513.
47.Czepita D. (1991), Badania doświadczalne nad rolą układu adrenergicznego w kształtowaniu odpowiedzi bioelektrycznej siatkówki i kory wzrokowej, Klinika Oczna, 92, 127–128.
48.Dacey D. (2004), Origins of perception: retina ganglion cell diversity and the creation of parallel visual pathways, w: The cognitive neurosciences III, red. M.S. Gazzaniga Cambrige, Massachusetts, London, England, 281–301.
49.Dalsgaard M.K., Quistorff B., Danielsen E.R., Selmer C., Vogelsang T., Secher N.H. (2004), A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the brain, J Physiol, 544, 571–578.
50.Davey C.P. (1973), Physical exertion and mental performance, Ergonomics, 16, 595– 599.
51.Davis J.M., Bailey S.P. (1997), Possible mechanisms of central nervous system fatigue during exercise, Med Sci Sports Exerc, 29(1), 45–57.
52.Davis R.C. (1940), Set and muscular tension, Indiana University Publications, Science, 10, 1–30.
53.Davranche K., Audiffren M. (2004), Facilitating effects of exercise on information processing, J Sports Sci, 22 (5), 419–428.
54.Davranche K., Burle B., Audiffren M., Hasbroucq T. (2005), Information processing during physical exercise: a chronometric and electromygraphic study, Exp Brain Res, 165, 532–540.
55.Davranche K., Burle B., Audiffren M., Hasbroucq T. (2006), Physical exercise facilitates motor processes in simple reaction time performance: An electromyographic analysis, Neurosci Lett, 396, 54–56.
56.Davranche K., Pichon A. (2005), Critical flicker frequency threshold increment after an exhausting exercise, J Sport Exerc Psychol, 27 (4), 515–520.
57.Daw N.W. (2006), Visual Development (Perspectives in Vision Research), Springer, New York.
58.Deecke L., Scheid P., Kornhuber H.H. (1969), Distribution of readiness potential, premotion positivity and motor potential of the human cerebral cortex preceding voluntary finger movements, Exp Brain Res, 7, 158–168.
59.Deiber M.P., Ibañez V., Sadato N., Hallett M. (1996), Cerebral structures participating in motor preparation in humans: a positron emission tomography study, J Neurophysiol, 75 (1), 233–247.
60.DeJong R., Coles M.G., Logan G.D. (1995), Strategies and mechanisms in nonselective and selective inhibitory motor control, J Exp Psychol Hum Percept Perform, 21, 498–511.
61.DeJong R., Coles M.G., Logan G.D., Gratton G. (1990), In search of the point of no return: the control of response processes, J Exp Psychol Hum Percept Perform, 16, 164–182.
62.Delignières D., Brisswalter J., Legros P. (1994), Influence of physical exercise on choice reaction time in sports experts: The mediating role of resource allocation, J Hum Mov Studies, 27, 173–188.
63.Delp M.D., Armstrong R.B., Godfrey D.A., Laughlin M.H., Ross C.D., Wilkerson M.K. (2001), Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine, J Physiol, 533, 849–859.
64.Derwent J.K., Linsenmeier R. (2000), Effects of hypoxemia on the a- and b-waves of the electroretinogram in the cat retina, Invest Ophthalmol Vis Sci, 41, 3634–3642.
65.Di Russo F., Pitzalis S., Spitoni G., Aprile T., Patria F., Spinelli D., Hillyard S.A. (2005), Identification of the neural sources of the pattern-reversal VEP, Neuroimage, 24, 874–886.
66.Dodwell P.C. (2005), Podstawowe mechanizmy widzenia, w: Czucie i percepcja, red. R.L. Gregory, A.M. Dolman, Zysk i S-ka, Poznań, 13–39.
67.Donders F.C. (1868), Die Schnelligkeit psychischer Prozesse, Archive für Anatomie und Physiologie und wissenschaftliche Medizin, 6, 657–681.
68.Duffy E. (1957), The psychological significance of the concept of „arousal” or „activation”, Psychol Rev, 64, 265–275.
69.Easterbrook J.A. (1959), The effect of emotion on cue utilization and the organization of behavior, Psychol Rev, 66, 183–201.
70.Eimer M. (1995), Stimulus-response compatibility and automatic response activation: Evidence from psychophysiological studies, J Exp Psychol Hum Percept Perform, 21, 837–854.
71.Enoka R.M., Stuart D.G. (1992), Neurobiology of muscle fatigue, J Appl Physiol, 772, 1631–1648.
72.Erickson G. (2007), Sports vision: vision care for the enhancement of sports performance, Butterworth-Heinemann, St. Louis, Mo.
73.Ericsson K.A., Krampe R.T., Tesch-Römer C. (1993), The role of deliberate practice in the acquisition of expert performance, Psychol Rev, 100 (3), 363–406.
74.Fahl E., Gassmann M., Grimm Ch., Seeliger M.W. (2008), Oxygen supply and retinal function: insights from a transgenic animal model, Adv Exp Med Biol, 613, 171– 177.
75.Feigl B., Stewart I., Brown B. (2007), Experimental hypoxia in human eyes: Implications for ischaemic disease, Clin Neurophysiol, 118, 887-895.
76.Fitts P.M., Seeger C.M. (1953), S-R compatibility: Spatial characteristics of stimulus and response codes, J Exp Psychol, 46, 199–210.
77.Fitts P.M., Deininger R.L. (1954), S-R compatibility: Correspondence amoung paired elements within stimulus and response codes, J Exp Psychol, 48, 483–492.
78.Fitzhugh R. (1957), The statistical detection of threshold signals in the retina, J Gen Physiol, 40, 925–948.
79.Fix J.D. (1997), Jądra podstawy i układ pozapiramidowy, w: Neuroanatomia, red. J. Moryś, Elsevier Urban & Partner, Wrocław, 337–347.
80.Fleury M., Bard C., Jobin J., Carriere L. (1981), Influence of different types of physical fatigue on a visual detection task, Percept Mot Skills, 53 (3), 723–730.
81.Forster H.V., Soto R.J., Dempsey J.A., Hosko M.J. (1975), Effect of Sojourn at 4300 m altitude on electroencephalogram and visual evoked response, J Appl Physiol, 39, 109–113.
82.Fuchsjäger-Mayrl G., Luksch A., Malec M., Polska E., Wolzt M., Schmetterer L. (2003), Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans, Invest Ophthalmol Vis Sci, 44, 728–733.
83.Gandevia S.C. (2001), Spinal and supraspinal factors in human muscle fatigue, Physiol Rev, 81 (4), 1725–1789.
84.Garhöfer G., Zawinka C., Huemer K.H., Schmetterer L., Dorner G.T. (2003a), Flicker light-induced vasodilatation in the human retina: Effect of lactate and changes in mean arterial pressure, Invest Ophthalmol Vis Sci, 44, 5309–5314.
85.Garhöfer G., Zawinka C., Resch H., Menke M., Schmetterer L., Dorner G.T. (2003b), Effect of intravenous administration of sodium lactate on retinal blood flow in healthy subjects, Invest Ophthalmol Vis Sci, 44, 3972–3976.
86.Gehlbach P.L., Purple R.L. (1994), A paired comparison of two models of experimental retinal ischemia, Curr Eye Res, 13, 597–602.
87.Ghozlan A., Widlocher D. (1993), Ascending-descending threshold difference and internal subjective judgment in CFF measurements of depressed patients before and after clinical improvement, Percept Mot Skills, 77 (2), 435–439.
88.Gibson J. (1979), The Ecological approach to visual perception, Hildale, Boston. Goldberg G. (1985), Supplementary motor area structure and function: review and hypothesis, Behav Brain Sci, 8, 567–616.
89.González-Alonso J, Dalsgaard M.K., Osada T., Volianitis S., Dawson E.A., Yoshiga C.C., Secher N.H. (2004), Brain and central haemodynamics and oxygenation during maximal exercise in humans, J Physiol, 557, 331–342.
90.Gore C.J., Scroop G.C., Marker J.D., Catcheside P.G. (1992), Plasma volume, osmolarity, total protein and electrolytes during treadmill running and cycle ergometer exercise, Eur J Appl Physiol Occup Physiol, 65 (4), 302–310.
91.Gottlob I., Weghaupt H., Vass C., Auff E. (1989), Effect of levodopa on the human pattern electroretinogram and pattern visual and pattern visual evoked potentials, Graefe’s Arch Clin Exp Ophthalmol, 227 (5), 421–427.
92.Grego F., Vallier J.M., Collardeau M., Bermon S., Ferrari P., Candito M., Bayer P., Magnié M.-N., Brisswalter J. (2004), Effects of long duration exercise on cognitive function, blood glucose, and counterregulatory hormones in male cyclists, Neurosci Lett, 364, 76–80.
93.Greiwe J.S., Hickner R.C., Shah D.S., Cryer P.E., Holloszy J.O. (1999), Norepinephrine response to exercise at the same relative intensity before and after endurance training, J Appl Physiol, 86, 531–535.
94.Gupta L.Y., Marmor M.F. (1993), Mannitol, dextromethorphan, and catalase minimize ischemic damage to RPE and retina, Arch Ophthalmol, 111, 384–388.
95.Halliday A.M. (1993), The visual evoked potentials in healthy subjects, w: Evoked potentials in clinic testing, red. A.M. Halliday, Churchill Livingstone.
96.Harris A., Arend O., Bohnke K., Kroepfl E., Danis R., Martin B. (1996), Retinal blood flow during dynamic exercise, Graefe’s Arch Clin Exp Ophthalmol, 234, 440– 444.
97.Hasbroucq T., Burle B., Bonnet M., Possamai C.A., Vidal F. (2002), Dynamique du traitement de l’information sensorimotrice: apport de l’électrophysiologie, Can J Exp Psychol, 56 (2), 75–97.
98.Hattori S., Naoi M., Nishino H. (1994), Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running, Brain Res Bull, 35, 41–49.
99.Hellsten-Westing Y., Balsom P.D., Norman B., Sjödin B. (1993), The effect of high-intensity training on purine metabolism in man, Acta Physiol Scand, 149, 405–412.
100.Helsen W.F., Starkes J.L. (1999), A multidimensional approach to skilled perception and performance in sport, Appl Cognt Psychol, 13, 1–27.
101.Heyes M.P., Garnett E.S., Coates G. (1988), Nigrostriatal dopaminergic activity is increased during exhaustive exercise stress in rats, Life Sci, 42, 1537–1542.
102.Hick W.E. (1948), Discontinuous functioning of the human operator in pursuit tasks, Quart J Exp Psychol, 1, 36–50.
103.Hick W.E. (1952), On the rate of gain of information, Quart J Exp Psychol, 4, 11–26.
104.Higashiura T., Nishihira Y., Kamijo K., Hatta A., Kim S.R., Hayashi K., Kaneda T., Kuroiwa K. (2006), The interactive effects of exercise intensity and duration on cognitive processing in thecentral nervous system, Adv Exerc Sports Physiol, 12 (1), 15–21.
105.Hogervorst E., Riedel W., Jeukendrup A., Jolles J. (1996), Cognitive performance after strenuous physical exercise, Percept Mot Skills, 83, 479–488.
106.Holopigian C., Clewner L., Seiple W., Kupersmith M. (1994), The effects of dopamine blockade on the human flash electroretinogram. Doc Ophthalmol, 86, 1–10.
107.Hull C.L. (1943), Principles of behaviour, Appleton-Century Crofts, New York.
108.Humphreys M.S., Revelle W. (1984), Personality, motivation, and performance: a theory of the relationship between individual differences and information processing, Psychol Rev, 91, 153–184.
109.Ide K., Pott F., Van Lieshout J.J., Secher N.H. (1998), Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass, Acta Physiol Scand, 162, 13–20.
110.Ide K., Schmalbruch I.K., Quistorff B., Horn A., Secher N.H. (2000), Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise, J Physiol, 522, 159–164.
111.Iester M., Torre P.G., Bricola G., Bagnis A., Calabria G. (2007), Retinal blood flow autoregulation after dynamic exercise in healthy young subjects, Ophthalmologica, 221, 180–185.
112.Ikeda A., Shibasaki H. (1992), Invasive recordings of movement-related cortical potentials in humans, J Clin Neurophysiol, 90, 509–520.
113.Ilan A.B., Polich J. (1999), P300 and response time from a manual Stroop task, Clin Neurophysiol, 110, 367–373.
114.Imms F.J., Russo F., Iyawe V.I., Segal M.B. (1998), Cerebral blood flow velocity during and after sustained isometric skeletal muscle contractions in man, Clin Sci (London), 94 (4), 353–358.
115.Imray C.H., Myers S.D., Pattinson K.T., Bradwell A.R., Chan C.W., Harris S., Collins P., Wright A.D. (2005), Effect of exercise on cerebral perfusion in humans at high altitude, J Appl Physiol, 99, 699–706.
116.Ishigaki H. (1988), The deterioration of visual acuity by 15 minutes cycle ergometer exercise and analysis of its factor, Jap J Phys Educ, 33 (3), 185–192.
117.Jafarzadehpur E., Yarigholi M.R. (2004), Comparison of visual acuity in reduce lamination and facility of ocular accommodation in table tennis champions and non-players, J Sports Sci Med, 3, 44–48.
118.Jaśkowski P., Kurczewska M. (2005), Zastosowanie zlateralizowanego potencjału gotowości w psychologii eksperymentalnej, Nauka, 1, 87–99.
119.Jaśkowski P., Rybarczyk K., Jaroszyk F. (1994), The relationship between latency of auditory evoked potentials, simple reaction time and stimulus intensity, Psychol Res, 56, 59–65.
120.Jasper H.H. (1958), The ten twenty system of the International Federation, Electroenceph Clin Neurophysiol, 10, 371–375.
121.Kahneman D. (1973), Attention and effort. Prentice-Hall, Englewood Cliffs, NJ. Kaiser H.F. (1958), The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23, 187–200.
122.Kalat J.W. (2007), Neuronalne podłoże percepcji wzrokowej, w: Biologiczne podstawy psychologii, red. J.W. Kalat, PWN, Warszawa, 157–176.
123.Kamijo K., Nishihira Y., Hatta A., Kaneda K., Kida T., Higashiura T., Kuroiwa K. (2004a), Changes in arousal level by differential exercise intensity, Clin Neurophysiol, 115, 2693–2698.
124.Kamijo K., Nishihira Y., Hatta A., Kaneda K., Wasaka T., Kida T., Kuroiwa K. (2004b), Differential influences of exercise intensity on information processing in the central nervous system, Eur J App Physiol, 92, 305–311.
125.Kamijo K., Nishihira Y., Higashiura T., Hatta A., Kaneda T., Kim S.R., Kuroiwa K., Kim B.J. (2006), Influence of exercise intensity on cognitive processing and arousal level in the central nervous system, Adv Exerc Sports Physiol, 12 (1), 1–7.
126.Kammer T., Lehr L., Kirschfeld K. (1999), Cortical visual processing is temporally dispersed by luminance in human subjects, Neurosci Lett, 263, 133–136.
127.Kato Y., Endo H., Kizuka T., Asami T. (2006), Automatic and imperative motor activations in stimulus-response compatibility: magnetoencephalographic analysis of upper and lower limbs, Exp Brain Res, 168, 51–61.
128.Kawato M. (1999), Internal models for motor control and trajectory planning, Curr Opin Neurobiol, 9, 718–727.
129.Keele S., (1968), Movement control and skilled motor performance, Psychol Bull, 70, 387–404.
130.Kelso J.A. (1995), Dynamic patterns: The self-organization of brain and behavior, Cambridge, MA, MIT Press.
131.Kelso J.A., Schöner G. (1988), Self-organization of coordinative movement patters, Hum Mov Sci, 7, 27–46.
132.Kergoat H., Forcier P. (1996), Correlation of an exercise-induced increase in systemic circulation with neural retinal function in humans, Doc Ophthalmol, 92, 145–157.
133.Kergoat H., Renaud J., Lovasik J.V. (1995), Alteration of inner retinal function by exercise, Optom Vis Sci, 72, 188–191.
134.Ketai L.H., Simon R.H., Kreit J.W., Grum C.M. (1987), Plasma hypoxanthine and exercise, Am Rev Respirat Dis, 136, 98–101.
135.Kim S.Y., Nayak M.S., Kita N., Marmor M.F. (1994), Electroretinogram recovery in the rabbit after repetitive short-term ischemia in light and dark, Invest Ophthalmol Vis Sci, 35, 664–668.
136.Kioumourtzoglou E., Kourtessis T., Michalopoulou, M. Derri V. (1998), Differences in several perceptual abilities between experts and novices in basketball, volleyball and water-polo, Percept Mot Skills, 86, 899–912.
137.Kleim J.A., Hogg T.M., VandenBerg P.M., Cooper N.R., Bruneau R., Remple M. (2004), Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning, J Neurosci, 24 (3), 628–633.
138.Klemp K., Lund-Anderse H., Sander B., Larsen M. (2007), The effect of acute hypoxia and hyperoxia on the slow multifocal electroretinogram in healthy subjects, Invest Ophthalmol Vis Sci, 48, 3405–3412.
139.Klorman R., Ryan R. (1980), Heart rate, contingent negative variation, and evoked potentials during anticipation of affective stimulation, Psychophysiology, 17, 513–523.
140.Kok A. (1997), Event-related-potential (ERP) reflections on mental resources: a review and synthesis, Biol Psychol, 21 (45), 19–56.
141.Kornblum S., Hasbroucq T., Osman A. (1990), Dimensional overlap: Cognitive basis of stimulus-response compatibility. A model and taxonomy, Psychological Review, 97, 253–270.
142.Koskela P.U. (1988), Jogging and contrast sensitivity, Acta Ophthalmol, 66, 725–727.
143.Kramer A.F., Strayer D. L. (1988), Assessing the development of automatic processing: an application of dual-task and event-related brain potential methodologies, Biol Psychol, 26, 231–267.
144.Kryściak J., Domaszewska K., Podgórski T., Konarski J., Rychlewski T. (2009), Wydolność fizyczna a hipoksja tkankowa u hokeistów na trawie, Medycyna Sportowa, 25 (3), 169–175.
145.Kuliński J., Skowroński W., Prost M., Krajewski M., Stasiak K. (2003), Zachowanie się parametrów wzrokowych potencjałów wywołanych w warunkach hipoksji normobarycznej (9,6% tlenu), Polski Przegląd Medycyny Lotniczej, 4 (9), 417–427.
146.Kutas M., McCarthy G., Donchin E. (1977), Augmenting mental chronometry: the P300 as a measure of stimulus evaluation time, Science, 197, 792–795.
147.Lang W., Cheyne D., Kristeva R., Beisteiner R., Lindinger G., Deeke L. (1991), Three-dimensional localization of SMA activity preceding voluntary movement – a study of electric and magnetic fields in a patient with infarction of the right supplementary motor area, Experimental Brain Research, 87, 688–695.
148.Latash M.L. (1998), Neurophysiological basic of movement, Champaign, Human Kinetics.
149.Latash M.L. (2008), Evolution of motor control: from reflexes and motor programs to the equilibrium-point hypothesis, Journal of Human Kinetics, 19, 3–24.
150.Lennie P. (1998), Single units and visual cortical organization, Perception, 27, 889–935. Levitt S., Gutin B. (1971), Multiple choice reaction time and movement time during- -physical exertion, Res Q Exerc Sport, 42, 405–410.
151.Lewis S.F., Taylor W.F., Graham R.M., Pettinger W.A., Schutte J.E., Blomqvist C.G. (1983), Cardiovascular responses to exercise as functions of absolute and relative work load, Am Physiol Soc, 54, 1314–1324.
152.Linkis P., Jørgensen L.G., Olesen H.L., Madsen P.L., Lassen N.A., Secher N.H. (1995), Dynamic exercise enhances regional cerebral artery mean blood flow velocity, J Appl Physiol, 78, 12–16.
153.Linsay P.H., Norman D.A. (1991), Procesy przetwarzania informacji u człowieka, Wydawnictwo Naukowe PWN, Warszawa.
154.Linsenmeier R. (1986), Effects of light and darkness on oxygen distribution and consumption in the cat retina, J Gen Physiol, 88, 521–542.
155.Linsenmeier R. (1990), Electrophysiological consequences of retinal hypoxia, Graefe’s Arch Clin Exp Ophthalmol, 228, 143–150.
156.Liu F., Xu G., Liu Z., Zhao Y., Lu X., Wang J. (2005), The effects of stellate ganglion block on visual evoked potential and blood flow of the ophthalmic and internal carotid arteries in patients with ischemic optic neuropathy, Anesth Analg, 100, 1193–1196.
157.Longo A., Geiser M.H., Riva C.E. (2004), Posture changes and subfoveal choroidal blood flow, Invest Ophthalmol Vis Sci, 45, 546–551.
158.Longstaff A. (2006), Neurobiologia. Krótkie wykłady, Wydawnictwo Naukowe PWN, Warszawa.
159.Loubinoux I., Pariente J., Rascol O., Celsis P., Chollet F. (2002), Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A doubleblind, placebo-controlled, multi-dose study in healthy subjects, Neuropsychologia, 40 (11), 1815–1821.
160.Lovasik J.V., Kergoat H. (2004), Consequences of an increase in the ocular perfusion pressure an the pulsatile ocular blood flow, Optom Vis Sci, 81 (9), 692–698.
161.Lovasik J.V., Kergoat H., Riva C. E., Petrig B.L., Giser M., (2003), Choroidal blood flow during exercise-induced changes in the ocular perfusion pressure, Invest Ophthalmol Vis Sci, 44, 2126–2132.
162.Lukjanowa L.D. (1997), Bioenergetic hypoxia: definition, mechanisms, and methods of correction, Biull Exp Biol Med, 124(9), 244–254.
163.Luksch A., Polska E., Imhof A., Schering J., Fuchsjäger-Mayrl G., Wolzt M., Schmetterer L. (2003), Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans, Invest Ophthalmol Vis Sci, 44(2), 734–739.
164.Macaluso C., Onoe S., Niemeyer G. (1992), Changes in glucose level affect rod function more than cone function in the isolated, perfused cat eye, Invest Ophthalmol Vis Sci, 33, 2798–2808.
165.Macaluso E., Frith C.D., Driver J. (2000), Modulation of human visual cortex by crossmodal spatial attention, Science, 289, 1206–1208.
166.MacKay W.A., Bonnet M. (1990), CNV, stretch reflex and reaction time correlates of preparation for movement direction and force, Electroenceph Clin Neurophysiol, 76, 47–62.
167.Magnié M.N., Bermon S., Martin F., Madany-Lounis M., Suisse G., Muhammad W., Dolisi C. (2000), P300, N400, aerobic fitness and maximal aerobic exercise, Psychophysiology, 37, 1–9.
168.Malmo R.B. (1959), Activation: A neuropsychological dimension, Psychol Rev, 66, 367– 386.
169.Marmor M.F., Holder G.E., Seeliger M.W., Yamamoto S. (2004), Standard for clinical electroretinography (2004 update), Doc Ophthalmol, 108, 107–114.
170.Martens R. (1974), Arousal and motor performance, Exerc Sport Sci Rev, 2, 158–188. Maruszewski T. (2001), Psychologia poznania, Gdańskie Wydawnictwo Psychologiczne, Gdańsk.
171.Masaki H., Takasawa N., Yamazaki K. (2000), An electrophysiological study of the locus of theinterference effect in a stimulus-response compatibility paradigm, Psychophysiology, 37, 464–472.
172.Masaki H., Wild-Wall N., Sangals J., Sommer W. (2004), The functional locus of the lateralized readiness potential, Psychophysiology, 41, 220–230.
173.Masland R.H. (2001), The fundamental plan of the retina. Neuroscience, 4, 877–886.
174.McCarthy G., Donchin E. (1981), A metric for thought: a comparison of P300 latency and reaction time, Science, 211, 77–80.
175.McMorris T. (2004), Acquisition and performance of sports skills, Cicester, Wiley.
176.McMorris T. (2006), Exercise and cognition: Theoretical and empirical evidence for an interaction effect from an integrated cognitive psychology/neuroscientific perspective, w: Focus an exercise and health research, red. T.B. Selkirk, Nova Science Publishers, Inc., New York, 17–60.
177.McMorris T. Graydon J. (2000), The effect of incremental exercise on cognitive performance, Int J Sport Psychol, 31, 66–81.
178.McMorris T., Delves S., Sproule J., Lauder, M., Hale, B. (2005), Effect of incremental exercise on initiation and movement times in a choice response, whole body psychomotor task, Br J Sports Med, 39, 537–541.
179.McMorris T., Graydon J. (1997), The effect of exercise on cognitive performance in soccer- specific tests, J Sports Sci, 15 (5), 459–468.
180.McMorris T., Myers S., MacGillivary W.W., Sexsmith J.R., Fallowfield J., Graydon J., Forster D. (1999), Exercise, plasma catecholamine concentrations and decisionmaking performance of soccer players on a soccer-specific test, J Sports Sci, 17, 667–676.
181.McMorris T., Sproule J., Delves S., Child R. (2000), Performance of a psychomotor skill following rest, exercise at the plasma epinephrine threshold and maximal intensity exercise, Percept Mot Skills, 91 (2), 553–562.
182.McMorris T., Tallon M., Williams C., Sproule J., Draper S., Swain J., Potter J., Clayton N. (2003), Incremental exercise, plasma concentrations of catecholamines, reaction time, and motor time during performance of a noncompatible choice response time task, Percept Mot Skills, 97, 590–604.
183.McMorris T., Keen P. (1994), Effect of exercise on simple reaction times of recreational athletes, Percept Mot Skills, 78, 123–130.
184.Meeusen R., De Meirleir K. (1995), Exercise and brain neurotransmission, Sports Med, 20 (3), 160–188.
185.Meeusen R., Thorre K., Chaouloff F., Sarre S., De Meirleir K., Ebinger G., Michotte Y. (1996), Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats, Brain Res, 740, 245–252.
186.Meeusen R., Piacentini F., De Meirleir K. (2001), Brain microdialysis in exercise research, Sports Med, 31 (14), 965–983.
187.Meeusen R., Watson P., Hasegawa H., Roelands B., Piacentini M.F. (2006), Central fatigue: the serotonin hypothesis and beyond, Sports Med, 36, 881–909.
188.Miller J.O., Ulrich R., Rinkenauer G. (1999), Effects of stimulus intensity on the lateralized readiness potential, J Exp Psychol, Human Perception & Performance, 25, 1454–1471.
189.Millslagle D., Delarosby A., VonBank S. (2005), Incremental exercise in dynamic visual acuity, Percept Mot Skills, 101, 657–664.
190.Miyake A., Friedman N.P., Emerson M.J., Witzki A.H., Howerter A., Wager T.D. (2000), The unity and diversity of executive functions and their contributions to complex „Frontal Lobe” tasks: a latent variable analysis, Cogn Psychol, 41 (1), 49–100.
191.Molholm S., Ritter W., Murray M.M., Javitt D.C., Schroeder C.E., Foxe J.J. (2002), Multisensory auditory-visual interactions during early sensory processing in humans: a high-density electrical mapping study, Cogn Brain Res, 14 (1), 115–128.
192.Monfils M.H., Plautz E.J., Kleim J.A. (2005), In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience, Neuroscientist, 11 (5), 471–483.
193.Montes-Mico R., Bueno I., Candel J., Pans A.M. (2000), Eye-hand and eye-foot visual reaction time of young soccer players, Optometry, 71 (12), 775–780.
194.Mulert C., Gallinat J., Dorn H., Herrmann W.M., Winterer G. (2003), The relationship between reaction time, error rate and anterior cingulate cortex activity, Int J Psychophysiol, 47 (2), 175–183.
195.Müller-Gethmann H., Rinkenauer G., Stah J., Ulrich R. (2000), Preparation of response force and movement direction: Onset effects on the lateralized readiness potential, Psychophysiology, 37, 507–514.
196.Müller-Gethmann H., Ulrich R., Rinkenauer G. (2003), Locus of the effect of temporal preparation: Evidence from the lateralized readiness potential, Psychophysiology, 40, 597–611.
197.Näätänen R. (1973), The inverted-U relationship between activation and performance: a critical review, w: Attention and Performance IV, red. S. Kornblum, Academic Press, New York, 155–174.
198.Nakamura Y., Nishimoto K., Akamatu M., Takahashi M., Maruyama A. (1999), The effect of jogging on P300 event related potentials, Electromyograph Clin Neurophysiol, 39, 71–74.
199.Nayak M.S., Kita M.M., Marmor M.F. (1993), Protection of rabbit retina from ischemic injury by superoxide dismutase and catalase, Invest Ophthalmol Vis Sci, 34, 2018– 2022.
200.Németh J., Knézy K., Tapasztó B., Kovács R., Harkányi Z. (2002), Different autoregulation response to dynamic exercise in ophthalmic and central retinal arteries: a color Doppler study in healthy subjects, Graefe’s Arch Clin Exp Ophthalmol 240, 835–840
201.Nielsen H.B., Boushel R., Madsen P., Secher N.H. (1999), Cerebral desaturation during exercise reversed by O2 supplementation, Am J Physiol, 277, 1729–1734.
202.Niemeyer G. (1975), The function of the retina in the perfused eye, Doc Ophthalmol, 39, 53–116.
203.Nieoullon A. (2002), Dopamine and the regulation of cognition and attention, Progress in Neurobiology, 571, 1–31.
204.Nihira M., Anderson K., Gorin F.A., Burns M.S. (1995), Primate rod and cone photoreceptors may differ in glucose accessibility, Invest Ophthalmol Vis Sci 36, 1259– 1270.
205.Nybo L., Rasmussen P. (2007), Inadequate cerebral oxygen delivery and central fatigue during strenuous exercise, Exerc Sport Sci Rev, 35, 110–118.
206.Nybo L., Secher N.H. (2004), Cerebral perturbations provoked by prolonged exercise, Prog Neurobiol, 72, 223–261.
207.Odom J.V., Bach M., Barber C., Brigell M., Marmor M.F., Tormene A.P., Holder G.E., (2004), Visual Evoked Potentials Standard (2004), Doc Ophthalmol, 108, 115–123.
208.Okuno T., Sugiyama T., Kohyama M., Kojima S., Oku H., Kieda T. (2006), Ocular blood flow changes after dynamic exercise in humans, Eye, 20, 796–800.
209.Onofrj M., Bodis-Wollner I. (1981), Dopaminergic deficiency causes delayed visual evoked potentials in rats, Annals of Neurology, 11 (5), 485–490.
210.Onofrj M., Fulgente T., Thomas A., Curatola L., Peresson M., Lopez L., Locatelli T., Martinelli V., Comi G. (1995), Visual evoked potentials generator model derived from different spatial frequency stimuli of visual field regions and magnetic resonance imaging coordinates of V1, V2, V3 areas in man, Int J Neurosci, 83, 213–239.
211.Osaka N. (1976), Reaction time as a function of peripheral retinal locus around fovea: effect of stimulus size, Percept Mot Skills, 43, 603–606.
212.Osiński W. (1990), Uwagi na tle definicji i klasyfikacji podstawowych pojęć charakteryzujących motoryczność człowieka, Antropomotoryka, 3, 3–8.
213.Osman A., Bashore T.R., Coles M.G., Donchin E., Meyer D.E. (1992), On the transmission of partial information: inferences from movement related brain potentials, J Exp Psychol Hum Percept Perform, 18, 217–232.
214.Osman A., Moore C.M., Ulrich R. (1995), Bisecting RT with lateralized readiness potentials: precue effects of LRP onset, Acta Psychol (Amst), 90 (1–3), 111–127.
215.Osman A., Moore C.M., Ulrich R. (2003), Temporal organization of covert motor processes during response selection and preparation, Biol Psychol, 64 (1–2), 47–75.
216.Overney L.S., Blanke O., Herzog M.H. (2008), Enhanced temporal but not attentional processing in expert tennis players, PLoS ONE, 3 (6), 1–9.
217.Owen G., Watson J., McGown A., Sharma S., Deary I., Kerr D., Barrett G. (2001), Influence of hypoglycaemia, with or without caffeine ingestion, on visual sensation and performance, Clin Sci, 100 (6), 619–626.
218.Oxendine J.B. (1984), Psychology of motor learning, Prentice-Hall, Englewood Cliffs, NJ.
219.Ozkaya Y.G., Agar A., Haciuglu G., Yargicoglu P., Abidin I., Senturk U.K. (2003), Training induced alterations of visual evoked potentials are not related to body temperature, Int J Sports Med, 24 (5), 359–362.
220.Özmerdivenli R., Bulut S., Bayar H., Karacabey K., Ciloglu F., Peker I., Tan U. (2005), Effects of exercise on visual evoked potentials, Int J Neurosci, 115, 1043–1050.
221.Pagliari R., Peyrin L. (1995), Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis, J Appl Physiol, 78 (6), 2121–2130.
222.Paillard J. (2005), Vectorial versus configural encoding of body space. A neural basis for a distinction between body schema and body image, w: Body image and body schema: Interdisciplinary perspectives (advances in consciousness research), red. H. De Preester, V. Knockaert, John Benjamins Publishing Co, Amsterdam, 86–109.
223.Paillard J. (1986), Système nerveux et fonction d’organisation, w: Psychologie, red. J. Piaget, P. Mounoud, J.P. Bronckart, Gallimard, La Pléiade, Paris, 1378–1441.
224.Palacz O., Lubiński W., Penkala K. (2003), Elektrofizjologiczna diagnostyka kliniczna układu wzrokowego, Oftal Warszawa.
225.Palacz O., Lubiński W., Penkala K., Barnyk K. (1997), Rola diagnostyki elektrofizjologicznej w schorzeniach centralnej części siatkówki, Nowa Med, 19, 3–16.
226.Pasupathy A., Connor C.E. (2002), Population coding of shape in area V4, Nat Neurosci, 5, 1332–1338.
227.Peachey N.S., Green D.J., Ripps H. (1993), Ocular ischemia and the effects of allopurinol on functional recovery in the retina of the arterially perfused cat eye, Invest Ophthalmol Vis Sci, 34, 58–65.
228.Piaget J. (1981), Równoważenie struktur poznawczych – centralny problem rozwoju, PWN, Warszawa.
229.Pieron H. (1920), Nouveless recherches sur l’analyse du temps de atence sensorielle et sur la loi qui relie. Ce temps a l’intensite de l’excitation vibratoire cutanee, Annee Psychologique, 36, 88–102.
230.Planer P.M. (1994), Sports vision manual, International Academy of Sports Vision, Harrisburg.
231.Presland J.D., Dowson M.N., Cairns S.P. (2005), Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion, Eur J Appl Physiol, 95 (1), 42–51.
232.Pribram K.H., McGuinness D. (1975), Arousal, activation and effort in the control of attention, Psychol Rev, 82, 116–149.
233.Qureshi I.A. (1996), Effects of exercise on intraocular pressure in physically fit subjects, Clin Exp Pharmacol Physiol, 23 (8), 627–757.
234.Raczek J. (1991), Koordynacyjne zdolności motoryczne (podstawy teoretyczno-empiryczne i znaczenie w sporcie), Sport Wyczynowy, 5–6, 8–19.
235.Raczek J. (2010), Antropomotoryka. Teoria motoryczności człowieka w zarysie, PZWL, Warszawa.
236.Raczek J., Mynarski W., Ljach W. (2002), Kształtowanie i diagnozowanie koordynacyjnych zdolności motorycznych, Akademia Wychowania Fizycznego w Katowicach.
237.Radlo S., Janelle C.M., Barba D.A., Frehlich S.G. (2001), Perceptual decision making for baseball pitch recognition: using P300 latency and amplitude to index attentional processing, Res Q Exerc Sport, 72 (1), 22–31.
238.Rasmussen P., Dawson E., Nybo L., van Lieshout J.J., Secher N.H., Gjedde A. (2007), Capillary-oxygenation-level-dependent near-infrared spectroscopy in frontal lope of humans, J Cereb Blood Flow Metab, 27, 1082–1093.
239.Regan M., Howard R. (1995), Fear conditioning, preparedness, and the contingent negative variation, Psychophysiology, 32, 208–214.
240.Rektor I., Kanovsky P., Bares M., Brazdil M., Streitova H., Klajblova H., Kuba R., Daniel P. (2003), A SEEG study of ERP in motor and premotor cortices and in the basal ganglia, Clin Neurophysiol, 114, 463–471.
241.Requin J., Brener J., Ring C. (1991), Preparation for action, w: Handbook of cognitive psychophysiology: Central and autonomic nervous system approaches, red. R. Jennings, M.G. Coles, Wiley, New York, 357–448.
242.Reynolds H.L. (1976), The effects of augmented levels of stress on reaction time in the peripheral visual field, Research Quarterly, 47 (4), 768–775.
243.Riva C.E., Grunwald J.E., Petring B.L. (1986), Autoregulation of human retinal blood flow: an investigation with Doppler velocimetry, Invest Ophthalmol Vis Sci, 27, 1706–1712.
244.Robinson F., Riva C.E., Gruwald J.E., Petring B.L., Sinclair S.H. (1986), Retinal blood flow autoregulation in response to an acute increase in blood pressure, Invest Ophthalmol Vis Sci, 27, 722–726.
245.Roland P.E., Larsen B., Lassen N.A., Skinhoj E. (1980), Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43, 118–136.
246.Rosenquist A.C. (1985), Connections of visual cortical areas in the cat, w: Cerebral cortex, red. A. Peters, E.G. Jones, Plenum, New York, 81–117.
247.Rowland B., Quessy S., Stanford T.R., Stein B.E. (2007), Multisensory integration shortens physiological response latencies, J Neurosci, 27, 5879–5884.
248.Royal K.A., Farrow D., Mujika I., Halson S.L., Pyne D., Abernathy B. (2006), The effects of fatique on decision making and shooting skill performance in water polo players, J Sports Sci, 24 (8), 807–815.
249.Russ W., Kling D., Loesevitz A., Hempelmann G. (1984), Effect of hypothermia on visual evoked potentials (VEP) in humans, Anesthesiology, 61 (2), 207–209.
250.Sahlin K., Ekberg K., Cizinsky S. (1991), Changes in plasma hypoxanthine and free radical markers during exercise in man, Acta Physiol Scand, 142, 275–281.
251.Sahlin K., Tonkonogi M., Soderlund K. (1998), Energy supply and muscle fatigue in humans, Acta Physiol Scand, 162, 261–266.
252.Salmela J.H., Ndoye O.D. (1986), Cognitive distortions during progressive exercise, Percept Mot Skills, 63, 1067–1072.
253.Sanders A.F. (1983), Towards a model of stress and human performance, Acta Psychologica, 53, 61–97.
254.Sanders A.F. (1990), Issues and trends in the debate on discrete vs. continuous processing of information, Acta Psychologica, 74, 123–167.
255.Sanders A.F. (1998), Elements of human performance: Reaction processes and attention in human skill, Lawrence Erlbaum Associates, Publishers Mahwah, New Jersey London.
256.Savelsbergh G.J.P., Williams M.A., Van der Kamp J., Ward P. (2002), Visual search, anticipation and expertise in soccer goalkeepers, J Sports Sci, 20, 279–287.
257.Schmeisser E.T., Gagliano D.L., Santiago-Marini J. (1997), Visual system effects of exercise on Mauna Kea at 2,200 and 4,200 meters altitude, Mil Med, 162 (3), 186–189.
258.Schmidgen H. (2003), Time and noise: the stable surroundings of reaction experiments, 1860–1890, Studies in History and Philosophy of Science Part C, Studies in History and Philosophy of Biological and Biomedical Sciences, 34 (2), 237–275.
259.Schmidt R.A. (1975), A schema theory of discrete motor skill learning, Psychol Rev, 82, 225–260.
260.Schmidt R.A. (1976), Control processes in motor skills, Exerc Sport Sci Rev, 4, 229– 261.
261.Schmidt R.A. (1991), Motor Learning and Performance, Human Kinetics Publishers Inc, Champaign, Ill.
262.Schmidt R.A., Wrisberg C.A. (2000), Motor learning and performance. A problem-based learning approach, Human Kinetics Books, Champaign.
263.Scott M.L., Riemann B.L., Freddie H.F. (2000), Introduction to the sensorimotor system, w: Proprioception and neuromuscular control in joint stability, red. M.L. Scott, H.F. Freddie, Human Kinetics, 17–24.
264.Secher N.H., Seifert T., Van Lieshout J.J. (2008), Cerebral blood flow and metabolism during exercise: implications for fatigue, J Appl Physiol, 104, 306–314.
265.Seidler R.D., Noll D.C., Thiers G. (2004), Feedforward and feedback processes in motor control, Neuroimage, 22 (4), 1775–1783.
266.Senel Ö., Eroglu H. (2006), Correlation between reaction time and speed in elite soccer players, J Exerc Sci Fit, 4 (2), 126–130.
267.Shapley R., Lennie P. (1985), Spatial frequency analysis in the visual system, Annu Rev Neurosci, 8, 547–583.
268.Simons R., Oehman A., Lang P. (1979), Anticipation and response set: cortical, cardiac, and electrodermal correlates, Psychophysiology, 16, 222–231.
269.Singh S.B., Thakur L., Anand J.P., Yadav D., Amitabh Banerjee P.K. Selvamurthy W. (2004), Changes in visual evoked potentials on acute induction to high altitude, Indian J Med Res, 120, 472–477.
270.Skowroński W., Kuliński J., Salata A. (2002), Okulistyka lotnicza, w: Medycyna lotnicza – wybrane zagadnienia, red. W. Kowalski, WLOP, Poznań, 238–240.
271.Smulders F.T.Y., Kok A., Kenemans J.L., Bashore T.R. (1995), The temporal selectivity of additive factor effects on the reaction process revealed in ERP component latencies, Acta Psychol, 90, 97–109.
272.Sosnowski T. (2008), Psychofizjologia, w: Psychologia, red. J. Strelau, Gdańskie Wydawnictwo Psychologiczne, Gdańsk, 131–178.
273.Spence J.T., Spence K.W. (1966), The motivational components of manifest anxiety: Drive and drive stimuli, w: Anxiety and behaviour, red. C.D. Spielberger, New York, Academic Press, 291–326.
274.Stafford T., Gurney K.G. (2004), The role of response mechanisms in determining reaction time performance. Pieron’s law revisited, Psychonomic Bull Rev, 11 (6), 975–987.
275.Stein B.E., Stanford T.R. (2008), Multisensory integration: Current issues from the perspective of the single neuron, Nat Rev Neurosci, 9, 255–266.
276.Sternberg S. (1969), The discovery of processing stages: Extensions of Donders’ method, Acta Psychol, 30, 276–315.
277.Sternberg S. (1998), Discovering mental processing stages: the method of additive factors, w: An invitation to cognitive science, red. S. Scarborough, S. Sternberg, MA, MIT Press, Cambridge, 703–863.
278.Strelau J. (2008), Psychologia. Podręcznik akademicki, t. 1 Podstawy psychologii, Gdańskie Wydawnictwo Psychologiczne, Gdańsk.
279.Szabela D.A. (1999), Potencjały wywołane w praktyce lekarskiej, Łódzkie Towarzystwo Naukowe, Łódź.
280.Szelenberger W. (2000), Potencjały wywołane, Elmiko, Warszawa.
281.Taliep S.M., St Clair Gibson A., Gray J., Van der Merwe L., Vaughan C.L., Noakes T.D., Kellaway L.A., John L.R. (2008), Event-related potentials, reaction time, and response selection of skilled and less-skilled cricket batsmen, Perception, 37, 96– 105.
282.Tandonnet C., Burle B., Vidal F., Hasbroucq T. (2003), The influence of time preparation on motor processes assessed by surface Laplacian estimation, Clin Neurophysiol, 114, 2376–2384.
283.Thomas S.N., Schroeder T., Secher N.H., Michell J.H. (1989), Cerebral blood flow during submaximal and maximal dynamic exercise in humans, J Appl Physiol, 67, 744–748.
284.Thomson K., Watt A., Liukkonen J. (2009), Differences in ball sports athletes speed discrimination skills before and after exercise induced fatigue, J Sports Sci Med, 8, 259–264.
285.Tinjust D., Kergoat H., Lovasik J. (2002), Neuroretinal function duringmild systemic hypoxia, Aviat Space Environ Med, 73, 1189–1194.
286.Tomporowski P.D. (2003), Effects of acute bouts of exercise on cognition, Acta Psychologica, 112(3), 297–324.
287.Tomporowski P.D., Ellis N.R. (1986), Effects of exercise on cognitive processes: a review, Psychol Bull, 99 (3), 338–346.
288.Turvey MT. (1977), Preliminaries to a theory of action with reference to vision, w: Perceiving, acting, and knowing: Toward an ecological psychology, red. R. Shaw, B.J. Erlbaum, Hillsdale, NJ, 211–263.
289.Ungerer D. (1977), Zur Theorie des sensomotorischen Lernens, Hofmann, Schorndorf, wyd. 3.
290.Van Beaumont W., Strand J.G., Petrofsky J.S., Hipskind S.G., Greenleaf J.E. (1973), Changes in total plasma content of electrolytes and proteins with maximal exercise, J Appl Physiol, 34, 102–106.
291.Van der Molen M.W., Bashore T.R., Halliday R., Callaway E. (1991), Chronopsychophysiology: mental chronometry augmented by psychophysiological time markers, w: Handbook of cognitive psychophysiology: central and autonomic nervous system approaches, red. J.R. Jennings, M.G. Coles, Wiley, Chichester, UK, 9–178.
292.Van Essen D.C., Anderson C.H., Felleman D.J. (1992), Information processing in the primate visual system: an integrated systems perspective, Science, 255, 419–423.
293.Vidal F., Grapperon J., Bonnet M., Hasbroucq T. (2003), The nature of unilateral motor commands in between-hand choice tasks as revealed by surface laplacian estimation, Psychophysiology, 40, 796–805.
294.Wachmeister L. (1980), Further studies of the chemical sensitivity of the oscylatory potentials of the electroretinogram (ERG): GABA and glycine antagonists, Acta Ophthalmol, 58, 712–725.
295.Wallace R.J. (1972), Spatial S-R compatibility effects involving kinesthetic cues, J Expl Psychol, 93, 163–168.
296.Walter W.G., Cooper R., Aldridge V.J., McCallum W.C., Winter A.L. (1964), Contingent negative variation: An electrical sign of sensorimotor association and expectancy in the human brain, Nature, 203, 380–384.
297.Wangsa-Wirawan N., Linsenmeier R. (2003), Retinal oxygen: fundamental and clinical aspects, Arch Ophthalmol, 121, 547–557.
298.Ward P., Williams A.M., Loran D.F. (2000), The development of visual function in expert and novice soccer players, Int J Sport Vis, 6 (1), 1–11.
299.Wascher E., Reinhard M., Wauschkuhn B., Verleger R. (1999), Spatial S-R compatibity with centralny presented stimuli: An event-related asymmetry study on dimensional overlap, J Cognit Neurosci, 11, 214–229.
300.Waśkiewicz Z. (2002), Wpływ wysiłków anaerobowych na wybrane aspekty koordynacji motorycznej, Studia nad motorycznością ludzką, 6, AWF Katowice.
301.Watanabe Y., Mizuno Y., Nagaoka R. (1985), The influence of the physical effort on the electroretinogram (ERG), J Sports Med Phys Fitness, 25, 747–752.
302.Weiss A.D. (1965), The locus of reaction time change with set, motivation, and age, J Gerontol, 20, 60–64.
303.Wiemann K. (1977), Strukturanalyse und Aktionsanalyse sportmotorischer Fertigkeiten, Sportwissenschaft, 7 (3), 230–246.
304.Wiemeyer J. (1994), Interne Bewegungsrepräsentation, Köln, b.s. Williams A.M., Burwitz L. (1993), Advance cue utilization in soccer, w: Science and football, red. T. Reilly, J. Clarys, A. Stibbe, E.& F.N. Spon, London, 239–243.
305.Williamson J.R., Chang K., Frangos M., Hasan K.S., Ido Y., Kawamura T., Nyengaard J.R., van den Enden M., Kilo C., Milton R.G. (1993), Hyperglycemic pseudohypoxia and diabetic complications, Diabetes, 42, 801–813.
306.Wilson W.M., Marsden C.A. (1995), Extracellular dopamine in the nucleus accumbens of the rat during treadmill running, Acta Physiol Scand, 155, 465–466.
307.Woods R.L., Thomson W.D. (1995), Effects of exercise on aspects of visual function, Ophthal Psysiol Opt, 15 (1), 5–12.
308.Worringham C.J., Kerr G.K. (2000), Proprioception and stimulus-response compatibility, Q J Exp Psychol, 53A (1), 69–83.
309.Wrisberg C.A. (1994), The arousal-performance relationship, Quest, 46, 60–77.
310.Wróbel A., Bekisz M., Kublik E., Musiał P. (2002), Aktywacja pętli korowo-wzgórzowej układów zmysłowych ssaków w procesie uwagi, Działalność Naukowa PAN, Wybrane Zagadnienia, 13, 42–45.
311.Wypych M., Wróbel A. (2004), Identyfikacja stanu funkcjonalnego mózgu przy pomocy nowych metod analizy potencjałów wywołanych, w: Materiały konferencyjne: Nowe metody w neurobiologii, Warszawa, 49–55.
312.Yagi Y., Coburn K.L., Estes K.M., Arruda J.E. (1999), Effects of aerobic exercise and gender on visual and auditory P300, reaction time, an accuracy, Eur J Appl Physiol, 80, 402–408.
313.Yerkes R.M., Dodson J.D. (1908), The relation of strength of stimulus to rapidity of habit formation, J Compar Neurol Psychol, 118, 459–482.
314.Zeki S.M. (1978), Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J Physiol, 277, 273–290.
315.Zwierko T. (2008), Differences in peripheral perception between athletes and nonathletes, Journal of Human Kinetics, 19, 53–62.
316.Zwierko T., Czepita D.M., Lubiński W. (2010a), The effect of physical effort on retinal activity in the human eye: rod and cone flicker electroretinogram studies, Graefe’s Arch Clin Exp Ophthalmol, 248, 659–666.
317.Zwierko T., Czepita D.M., Lubiński W., Lubkowska A. (2010b), Effects of physical effort on neuroretinal function in athletes and non-athletes: an electroretinographic study, Eur J Ophthalmol, 20, 381–388.
318.Zwierko T., Głowacki T., Osiński W. (2008), The effect of specific anaerobic exercises on peripheral perception in handball players, Kinesiologia Slovenica, 14, 68–76.
319.Zwierko T., Osiński W., Lubiński W., Czepita D., Florkiewicz B. (2010c), Speed of visual sensorimotor processes and conductivity in visual pathway in volleyball players, Journal of Human Kinetics, 23, 21–27.
320.Żukowski N. (1995), Czas reakcji w sytuacji zaskoczenia, Sport Wyczynowy, 11–12, 21–25.