Central European Journal of Sport Sciences and Medicine

ISSN: 2300-9705     eISSN: 2353-2807    OAI    DOI: 10.18276/cej.2023.4-07
CC BY-SA   Open Access   DOAJ  DOAJ

Issue archive / Vol. 44, No. 4/2023
The shape of the sagittal curvatures of the spine in a high-level acrobatic gymnasts – comparison by sex

Authors: Ewa Polak ORCID
Rzeszów University of Technology

Adrianna Gardzińska ORCID
Academic Sport Centre, Rzeszow University of Technology, Rzeszow, Poland

Katarzyna Walicka-Cupryś ORCID
Institute of Health Sciences, Medical College of Rzeszow University, University of Rzeszow, Rzeszow, Poland
Keywords: body posture competitive sport gymnastics lumbar lordosis thoracic kyphosis sacral slope spine
Data publikacji całości:2023
Page range:16 (79-94)
Klasyfikacja JEL: Y80
Cited-by (Crossref) ?:

Abstract

Specific loads on the spine and the very young age at which acrobatic gymnastics training is undertaken require monitoring the shape of the spine curvatures in gymnasts to detect possible postural abnormalities. The aim of this descriptive study was to assess and compare the shape of the spine in the sagittal plane in acrobatic gymnasts of both sexes and their associations with demographic and somatic variables. The study group included 159 acrobatic gymnasts aged 12-19 (106 females and 53 males) from 16 European countries. The study was designed as a survey and measurements of somatic variables and the angles of inclination (using the Baseline Bubble inclinometer) at four topographic points of the spine: S1, L5/S1, Th12/L1, C7/Th1. Based on the angles of spinal inclination, the sizes of the sacral slope (SS), lumbar lordosis (LL), and thoracic kyphosis (TK) were calculated. Body posture was assessed based on Wolański’s modified typology. The angles of SS and LL were significantly higher in females, and TK did not differ between sexes. Training experience positively correlated only with the size of the SS in both sexes. Age and somatic variables were significantly correlated with the size of the sagittal curvatures, mainly in females. The majority of gymnasts had a normal angle of SS and TK and a flattened LL. The equivalent and lordotic types of body posture were more frequent in females, and the kyphotic type in males. The incorrect body posture was noted in 19.8% of females and 43.4% of males. We concluded that acrobatic gymnasts are not at risk of increasing the size of spinal curvatures in the sagittal plane, but males show a tendency toward flattened LL and kyphotic type of body posture.
Download file

Article file

Bibliography

1.Anwajler, J., Wojna, D., Stepak, A., & Skolimowski, T. (2005). The influence of sports acrobatic training on the range of mobility of the spine and the upper and lower extremities. Polish Journal of Physiotherapy, 5(1), 57–64.
2.Castillo, E. D., & Obregón, R. (2018). Assessment of the sagittal spinal curvatures in dancers of Spanish dance. Journal of Human Sport and Exercise, 13, 129–137. https://doi.org/10.14198/jhse.2018.131.13
3.Czaprowski, D., Pawłowska, P., Gębicka, A., Sitarski, D., & Kotwicki, T. (2012). Intra- and interobserver repeatability of the assessment of anteroposterior curvatures of the spine using Saunders digital inclinometer. Ortopedia, traumatologia, rehabilitacja, 14(2), 145–153. https://doi.org/10.5604/15093492.992283
4.Czaprowski, D., Pawłowska, P., Kolwicz-Gańko, A., Sitarski, D., & Kędra, A. (2017). The Influence of the "Straighten Your Back" Command on the Sagittal Spinal Curvatures in Children with Generalized Joint Hypermobility. BioMed research international, 2017, 9724021. https://doi.org/10.1155/2017/9724021
5.Drzał-Grabiec, J., Snela, S. & Truszczyńska, A. (2016).The development of anterior-posterior spinal curvature in children aged 7–12 years. Biomedical Human Kinetics, 8(1), 72–82. https://doi.org/10.1515/bhk-2016-0011
6.FIG. (2016). Acrobatic Gymnastics Code of Points 2017-2020 (vs 09.06.2016). Retrieved from: https://www.gymnastics.sport (Accessed on 15.07.2017)
7.FIG. (2022a). Acrobatic Gymnastics Code of Points, Table of Difficulty 2022-2024. Retrieved from: https://www.gymnastics.sport/site/rules/#8 (Accessed on 20.10.2022)
8.FIG. (2022b). Acrobatic Gymnastics Age Group/Junior Rules 2022-2024. Retrieved from: https://www.gymnastics.sport/site/rules/#8 (Accessed on 20.10.2022)
9.Gardner, A., Berryman, F., & Pynsent, P. (2018). The Development of Kyphosis and Lordosis in the Growing Spine. Spine, 43(19), E1109–E1115. https://doi.org/10.1097/BRS.0000000000002654
10.Grabara, M. (2010). Postural variables in girls practicing sport gymnastics. Biomedical human kinetics, 2(2), 74–77. https://doi.org/10.2478/v10101-0018-6
11.Grabara, M., Bieniec, A., & Nawrocka, A. (2017). Spinal curvatures of children and adolescents—A cross-sectional study. Biomedical human kinetics, 9, 69–74. https://doi.org/10.1515/bhk-2017-0011
12.Grapton, X., Lion, A., Gauchard, G. C., Barrault, D., & Perrin, P. P. (2013). Specific injuries induced by the practice of trampoline, tumbling and acrobatic gymnastics. Knee surgery, sports traumatology, arthroscopy: official journal of the ESSKA, 21(2), 494–499. https://doi.org/10.1007/s00167-012-1982-x
13.Keller, T. S., Colloca, C. J., Harrison, D. E., Harrison, D. D., & Janik, T. J. (2005). Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine. The spine journal : official journal of the North American Spine Society, 5(3), 297–309. https://doi.org/10.1016/j.spinee.2004.10.050
14.Kluszczyński, M., Wąsik, J., Ortenburger, D., Zarzycki, D., & Siwik, P. (2017). Prognostic value of measuring the angles of lumbar lordosis and thoracic kyphosis with the Saunders inclinometer in patients with low back pain. Polish annals of medicine, 24, 31–35. https://doi.org/10.1016/j.poamed.2016.10.001.
15.Kruse, D. W., & Lemmen, B. (2009). Spine Injuries in the Sport of Gymnastics. Current Sports Medicine Reports, 8, 20–28. https://doi.org/10.1249/JSR.0b013e3181967ca6
16.Kums, T., Ereline, J., Gapeyeva, H., Pääsuke, M., & Vain, A. (2007). Spinal curvature and trunk muscle tone in rhythmic gymnasts and untrained girls. Journal of Back and Musculoskeletal Rehabilitation, 20(2–3), 87–95. https://doi.org/10.3233/BMR-2007-202-306
17.López-Miñarro, P. Á., Vaquero-Cristóbal, R., Alacid, F., Isorna, M., & Muyor, J.M. (2017). Comparison of sagittal spinal curvatures and pelvic tilt in highly trained athletes from different sport disciplines. Kinesiology, 49(1), 109–116. https://doi.org/10.26582/K.49.1.2
18.Makovitch, S., & Eng, C. (2020). Spine Injuries in Gymnasts. In: E. Sweeney (ed.) Gymnastics Medicine. Evaluation, Management and Rehabilitation. Springer Nature. https://doi.org/10.1007/978-3-030-26288-4_8
19.Mauricienė, V., & Bačiulienė, K. (2018). Spine’s Sagittal Plane Curves’ Coherence with Anthropometric Parameters in Schoolchildren. Baltic Journal of Sport and Health Sciences.; n. pag. https://doi.org/10.33607/BJSHS.V3I57.635
20.Muyor, J. M., Sánchez-Sánchez, E., Sanz-Rivas, D., & López-Miñarro, P. A. (2013). Sagittal spinal morphology in highly trained adolescent tennis players. Journal of sports science & medicine, 12(3), 588–593. PMID: 24149169
21.Preece, S. J., Willan, P., Nester, C. J., Graham-Smith, P., Herrington, L., & Bowker, P. (2008). Variation in pelvic morphology may prevent the identification of anterior pelvic tilt. The Journal of manual & manipulative therapy, 16(2), 113–117. https://doi.org/10.1179/106698108790818459.
22.Purnell, M., Shirley, D., Nicholson, L., & Adams, R. (2010). Acrobatic gymnastics injury: occurrence, site and training risk factors. Physical therapy in sport : official journal of the Association of Chartered Physiotherapists in Sports Medicine, 11(2), 40–46. https://doi.org/10.1016/j.ptsp.2010.01.002
23.Radaković, M., Madić, D., Radaković, K., Protić-Gava, B., Radanović, D., & Marković, K. Ž. (2016). Comparison of posture between gymnasts and non-athletes. Acta Kinesiologica, 10(1), 62–65.
24.Sainz de Baranda, P., Santonja, F., & Rodríguez-Iniesta, M. (2009). Valoración de la disposición sagital del raquis en gimnastas especialistas en trampolín. Revista Internacional de Ciencias del Deporte, 5(16), 21–33. https://doi.org/10.5232/ricyde2009.01602
25.Sainz de Baranda, P. S., Medina, F. S., & Rodríguez-Iniesta, M. (2010). Tiempo de entrenamiento y plano sagital del raquis en gimnastas de trampolín. Revista Internacional de Medicina y Ciencias de la Actividad Fisica y del Deporte, 10, 521–536. [in Spanish]
26.Sainz de Baranda, P., Cejudo, A., Moreno-Alcaraz, V. J., Martinez-Romero, M. T., Aparicio-Sarmiento, A., & Santonja-Medina, F. (2020). Sagittal spinal morphotype assessment in 8 to 15 years old Inline Hockey players. PeerJ. 8:e8229. https://doi.org/10.7717/peerj.8229
27.Sands, W. A., McNeal, J. R., Penitente, G., Murray, S. R., Nassar, L., Jemni, M., Mizuguchi, S., & Stone, M. H. (2016). Stretching the Spines of Gymnasts: A Review. Sports medicine (Auckland, N.Z.), 46(3), 315–327. https://doi.org/10.1007/s40279-015-0424-6
28.Sanz-Mengibar, J. M., Sainz-de-Baranda, P., & Santonja-Medina, F. (2018). Training intensity and sagittal curvature of the spine in male and female artistic gymnasts. The Journal of sports medicine and physical fitness, 58(4), 465–471. https://doi.org/10.23736/S0022-4707.17.06880-3
29.Saunders, H. D., & Stultz, M. R. (1994). Saunders Electronic Inclinometer Operator’s Manual. Chaska, MN, USA: The Saunders Group.
30.Saur, P. M., Ensink, F.B., Frese, K., Seeger, D. & Hildebrandt, J. (1996). Lumbar range of motion: reliability and validity of the inclinometer technique in the clinical measurement of trunk flexibility. Spine 1:,1332–1338
31.Schmidt, H., Bashkuev, M., Weerts, J., Altenscheidt, J., Maier, C., & Reitmaier, S. (2018). What does the shape of our back tell us? Correlation between sacrum orientation and lumbar lordosis. The spine journal : official journal of the North American Spine Society, 18(4), 655–662. https://doi.org/10.1016/j.spinee.2017.11.005
32.Stošić, D., Milenković, S., & Živković, D. (2011). The influence of sport on the development of postural disorders in athletes. Facta Universitatis, Series: Physical Education and Sport. 9(4), 375–384.
33.Taboada-Iglesias, Y., Santana, M. V., & Gutiérrez-Sánchez, Á. (2017). Anthropometric Profile in Different Event Categories of Acrobatic Gymnastics. Journal of human kinetics, 57, 169–179. https://doi.org/10.1515/hukin-2017-0058
34.Tanchev, P. I., Dzherov, A. D., Parushev, A. D., Dikov, D. M., & Todorov, M. B. (2000). Scoliosis in rhythmic gymnasts. Spine, 25(11), 1367–1372. https://doi.org/10.1097/00007632-200006010-00008
35.Taspi̇nar, F., Saracoglu, I., Afsar, E., Okur, E. O., Seyyar, G. K., Kurt, G., & Taspinar, B. (2017). Assessing the Relationship between Body Composition and Spinal Curvatures in Young Adults. Archives of Sports Medicine and Physiotherapy, 2(1), 010–015. https://doi.org/10.17352/asmp.000005
36.Tizabi, A. A.T ., Mahdavinejad, R., Azizi, A., Jafarnejadgero, T., & Sanjari M. (2012). Correlation between Height, Weight, BMI with Standing Thoracic and Lumbar Curvature in Growth Ages. World Journal of Sport Sciences, 7(1), 54–56.
37.Twarowska-Grybalow, N., & Truszczyńska-Baszak, A. (2023). The Sizes of Spine Curvatures of Children That Practice Selected Sports. International journal of environmental research and public health, 20(3), 1826. https://doi.org/10.3390/ijerph20031826
38.UEG. (2016). Technical Regulation - Specific Rules – Acrobatic Gymnastics. Retrieved from the website of the European Union of Gymnastics, https://www.europeangymnastics.com/page/rules (Accessed on 15.06.2017)
39.Walicka-Cupryś, K., & Drużbicki, M. (2016). Methodology of gravitational inclinometer application in evaluation of anterior-posterior spinal curvature. 20th European Congress of Physical and Rehabilitation Medicine. Estoril – Lisbon, 23–28.
40.Walicka-Cupryś, K., Wyszyńska, J., Podgórska-Bednarz, J., & Drzał-Grabiec, J. (2018). Concurrent validity of photogrammetric and inclinometric techniques based on assessment of anteroposterior spinal curvatures. European spine journal: official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 27(2), 497–507. https://doi.org/10.1007/s00586-017-5409-8.
41.Wilczyński, J., Lipińska-Stańczak, M. & Wilczyński, I. (2020). Body Posture Defects and Body Composition in School-Age Children. Children (Basel), 7(11), 204. https://doi.org/10.3390/children7110204.
42.Wojtys, E. M., Ashton-Miller, J. A., Huston, L. J., & Moga, P. J. (2000). The association between athletic training time and the sagittal curvature of the immature spine. The American journal of sports medicine, 28(4), 490–498. https://doi.org/10.1177/03635465000280040801
43.Vernetta-Santana, M., Ariza-Vargas, L., Martínez-Patiño, M.J., & López-Bedoya, J. (2022). Injury profile in elite acrobatic gymnasts compared by gender. Journal of human sport and exercise, 17(4), 719–731. https://doi.org/10.14198/jhse.2022.174.01
44.Zeyland-Malawka, E. (1999).Classification and assessment of body posture in the modification of Wolanski method and New York Classification Test. Fizjoterapia, 7(4),52–55. [in Polish]
45.Ziółkowska-Łajp, E., Demuth, A., Drozdowski, M., Czerniak, U., & Krzykała, M. (2012). The evaluation of sexual dimorphism of somatic features and body composition of young people doing water sports. Antropomotoryka, 59, 79–90. [in Polish]