Authors: |
Julian
Vasilev
University of Economics Varn a Department of Informatics Nataliya Marinova D. Tsenov Academy of Economics Svishtov Department of Business Informatics |
Keywords: | ontology text mining Rapid Miner the DIMBI project |
Whole issue publication date: | 2017 |
Page range: | 7 (153-159) |
Klasyfikacja JEL: | C45 C88 |
1. | Economics and Computer Science Journal. Retrieved from: http://eknigibg.net/index.php?route= information/information&information _id=8 (7.02.2017). |
2. | Feldman, R., Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data. New York: Cambridge University Press. |
3. | Gantz, J., Reinsel, D. (2012). The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the Far East. Retrieved from: http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020 .pdf (3.06.2016). |
4. | Hashimi, H., Hafez, A., Mathkour, H. (2015). Selection criteria for text mining approaches. Com-puters in Human Behavior, 51, 729-733. |
5. | Hearst, M. (1999). Untangling Text Data Mining. University of Maryland: Proceedings of the ACL '99. |
6. | Kumar, B. S., Ravi, V. (2016). A survey of the applications of text mining in financial domain. |
7. | Knowledge-Based Systems, 114, 128-147. |
8. | The DIME! project. Retrieved from: http://dirnbi.paragonweb.eu/ (7.02.2017). Rapid Miner. Retrieved from: https://rapidminer.com/ (7.02.2017). |