Finanse, Rynki Finansowe, Ubezpieczenia

Previously: Zeszyty Naukowe Uniwersytetu Szczecińskiego. Finanse, Rynki Finansowe, Ubezpieczenia

ISSN: 2450-7741    OAI    DOI: 10.18276/frfu.2018.92-26
CC BY-SA   Open Access 

Issue archive / 2/2018 (92)
Wycena opcji parabolicznych przy wykorzystaniu transformaty Fouriera
(Pricing parabola options using Fourier transform)

Authors: Arkadiusz Orzechowski
Szkoła Główna Handlowa
Keywords: parabola options Fourier transform Black-Scholes model
Data publikacji całości:2018
Page range:12 (301-312)
Klasyfikacja JEL: G13 C02
Cited-by (Crossref) ?:

Abstract

Purpose – Comparative analysis of alternative methods of pricing options which allows to determine the value of parabolic options. Design/methodology/approach – Investigating computational accuracy and speed of BS, BS-FT1 and BSFT2 methods with different numerical schemes that can be used in the calculation process. Findings – Under assumptions of the Black-Scholes model it is hard to prove superiority of the BS-FT1 and BS-FT2 models. However, due to their universalism and flexibility, these concepts should be developed. Originality/value – A new option pricing method based on the Fourier transform can be used to value various types of derivatives in various option pricing models.
Download file

Article file

Bibliography

1.Bakshi, G., Madan, D. (2000). Spanning and Derivative – Security Valuation. Journal of Financial Economics, 2 (55), 205–238. DOI: 10.1016/S0304-405X(99)00050-1.
2.Barndorff-Nielsen, O.E. (1995). Normal Inverse Gaussian Processes and the Modelling of Stock Returns. University of Aarhus: Aarhus University Department Theoretical Statistics.
3.Black, F., Scholes, M. (1973). The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 3 (81), 637–654. doi: 10.1086/260062.
4.Brandimarte, P. (2014). Handbook in Monte Carlo Simulation: Applications in Financial Engineering, Risk Management, and Economics. New York: John Wiley & Sons.
5.Brandimarte, P. (2006). Numerical Methods in Finance and Economics: a MATLAB®-Based Introduction. New York: John Wiley &Sons.
6.Carr, P., Geman, H., Madan, D.B., Yor M. (2002). The Fine Structure of asset Returns: An Empirical Investigation. Journal of Business, 2 (75), 305–332. DOI: 10.1086/338705.
7.Esser, A. (2004). Pricing in (In)complete Markets: Structural Analysis and Applications. Berlin–Heidelberg: Springer-Verlag.
8.Heynen, R.C., Kat, H.M. (2006). Pricing and Hedging Power Options. Financial Engineering and the Japanese Markets, 3 (3), 253–261.
9.Harrisson, M., Kreps, D. (1979). Martingales and Multiperiod Securities Markets. Journal of Economic Theory, 20, 381–408.
10.Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies, 2 (6), 327–343. DOI: 10.1093/rfs/6.2.327.
11.Kou, S. (2002). Jump-Diffusion Model for Option Pricing, Management Science, 8 (48), 1086–1101. DOI: 10.1287/mnsc.48.8.1086.166.
12.Madan, D., Carr, P., Chang, E. (1998). The Variance Gamma Process and Option Pricing. European Finance Review, 1 (2), 79–105. DOI: https://doi.org/10.1023/A:1009703431535.
13.Madan, D.B., Milne, F. (1991). Option Pricing with VG Martingale Components. Mathematical Finance, 1 (4), 39–55. DOI: 10.1111/j.1467-9965.1991.tb00018.x.
14.Merton, R.C. (1976). Option Pricing when Underlying Stock Returns are Discontinuous. Journal of Financial Economics 1– 2 (3), 125–144. DOI: 10.1016/0304-405X(76)90022-2.
15.Rydberg, T.H. (1997). The Normal Inverse Gaussian Levy Process: Simulation and Approximation. Communication in Statistics Stochastic Models, 4 (13), 887–910. DOI: 10.1080/15326349708807456.
16.Schmelzle, M. (2010). Option Pricing Formulae Using Fourier Transform: Theory and Application. Pobrano z: http://pfadintegral.com (22.04.2018).
17.Zhu, J. (2000). Modular Pricing of Options: An Application of Fourier Analysis. Berlin–Heidelberg: Springer-Verlag.