Authors: |
Jan
Kozak
Uniwersytet Ekonomiczny w Katowicach, Wydział Informatyki i Komunikacji Przemysław Juszczuk Uniwersytet Śląski w Katowicach, Wydział Informatyki i Nauki o Materiałach |
Keywords: | decision trees data analysis telemarketing campaign |
Whole issue publication date: | 2016 |
Page range: | 11 (49-59) |
1. | Boryczka, U., Kozak, J. (2014). On-the-go adaptability in the new ant colony decision forest approach. In: Intelligent Information and Database Systems. Intelligent Information and Database Systems – 6th Asian Conference, ACIIDS 2014, Bangkok, Thailand, April 7–9, 2014, Proceedings, Part II. Springer International Publishing, 157–166. |
2. | Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D. (2013). Weka manual for version 3-7-10. |
3. | Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. (1984). Classification and Regression Trees. New York: Chapman & Hall. |
4. | Elsalamony, H.A. (2014). Bank direct marketing analysis of data mining techniques. Network 5,0. International Journal of Computer Applications (0975–8887), 85 (7), 12–22. |
5. | Kass, G.V. (1980). An exploratory technique for investigating large quantities of categorical data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29 (2), 119–127. |
6. | Koronacki, J., Ćwik, J. (2008). Statystyczne systemy uczące się. Warszawa: Exit. |
7. | Kozak, J. (2011). Algorytmy mrowiskowe do konstruowania drzew decyzyjnych. Nieopublikowana praca doktorska. |
8. | Kozak, J., Boryczka, U. (2013). Dynamic version of the acdt/acdf algorithm for h-bond data set analysis. Computational Collective Intelligence. Technologies and Applications – 5th International Conference. Craiova, Romania, September 11–13, Proceedings, 701–710. |
9. | Lim, T.-S., Loh, W.-Y., Shih, Y.-S. (2000). A comparison of prediction accuracy, complexity, and training time of thirtythree old and new classification algorithms. Machine Learning, 40 (3), 203–228. |
10. | Loh, W.Y., Shih, Y.S. (1997). Split selection methods for classification trees. Statistica Sinica, 815–840. |
11. | Moro, S., Cortez, P., Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing. Decision Support Systems, 62, 22–31. |
12. | Moro, S., Laureano, R., Cortez, P. (2011). Using data mining for bank direct marketing: An application of the crisp-dm methodology. Conference-ESM’2011. Eurosis, 117–121. |
13. | Quinlan, J.R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106. |
14. | Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann. |
15. | Quinlan, J.R. (1996). Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research, 4, 77–90. |
16. | Rokach, L., Maimon, O. (2008). Data Mining With Decision Trees: Theory And Applications. River Edge, NJ, USA: World Scientific Publishing. |
17. | Timofeev, R. (2004). Classification and Regression Trees (CART) Theory and Applications. Master’s thesis, Berlin: CASE Humboldt University. |
18. | Łapczyński, M. (2003). Drzewa klasyfikacyjne w badaniach satysfakcji i lojalności klientów. W: Analiza satysfakcji i lojalności klientów. Zastosowania statystyki i data mining, 93 –102. Kraków: AE w Krakowie. |